

LizardTech™

GeoExpress SDK 7
User Manual

Copyrights

Copyright 2008 LizardTech, Inc. All rights reserved. Information in this document is subject to
change without notice. The software described in this document is furnished under a license
agreement or nondisclosure agreement. The software may be used or copied only in accordance
with the terms of those agreements. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or any means electronic or mechanical, including
photocopying and recording for any purpose other than the purchaser's personal use without the
written permission of LizardTech, Inc.

LizardTech, Inc

1008 Western Avenue, Suite 200

Seattle, Washington, U.S.A. 98104

206.652.5211

www.lizardtech.com

iii

Table of Contents

Introduction ... 7

Features.. 7

How to Read this Manual ... 9

SDK Contents ... 9

Getting Started .. 11

System Requirements.. 11

Installation .. 13

Linking the Sample Code... 13

Technical Support .. 13

Architecture and Design ... 15

Pipeline Design .. 15

Strip-Based Decoding .. 17

Scenes .. 18

Other Design Considerations .. 20

The Support Classes ... 23

Preprocessor Constants and Basic Typedefs .. 23

Status Strings... 23

The LTIFileSpec Class ... 23

Streams .. 24

The SDK Base Classes ... 25

Base Enums ... 25

Base Classes .. 25

The Image Classes ... 26

The Raw Readers and Writers ... 27

Scene and Buffer Management ... 27

Concrete Image Filters and Writers ... 29

Image Filters ... 29

Image Writers ... 30

MrSID Support ... 31

MG3 and MG2 ... 31

Key Features of MG3.. 31

Fundamentals of MG3 .. 34

MrSID Readers ... 43

JPEG 2000 Support ... 45

iv

The JPEG 2000 Reader .. 45

NITF Support ... 47

The NITF Reader .. 47

NITF Input Metadata ... 48

Metadata Support .. 51

The Metadata Record ... 51

The Metadata Database ... 52

The Tags ... 52

The C API ... 53

Image Support .. 53

Decode Support ... 54

Metadata Support ... 54

Streams .. 54

Command Line Applications .. 55

Switches Common to All Tools ... 55

mrsidinfo .. 56

mrsiddecode .. 57

mrsidviewer .. 63

Appendix A - Technical Notes .. 65

Porting Guide ... 65

MG3 Memory Usage ... 67

Zoom Levels ... 71

Coding Conventions .. 73

Overrides .. 77

Notes on Streams... 78

Notes on World Files.. 81

Notes on BBB Files .. 82

GeoTIFF Metadata for JPEG 2000 ... 89

Georeferencing of NITF Imagery ... 95

Metadata Tags .. 99

Negative y-Resolutions .. 103

Nodata and Background Pixels ... 104

Appendix B - Company and Product Information .. 107

About LizardTech and LizardTech Products .. 107

Copyrights, Trademarks and Credits .. 108

Glossary ... 111

Index ... 119

v

7

Introduction

Welcome to the GeoExpress Software Development Kit (SDK). This is the documentation for the Decode
version (DSDK).

Digital images have become important to every aspect of business, industry, and government. Because
of the enormous amounts of data involved, the use of high-quality images has been hindered by storage
and bandwidth constraints. LizardTech's technologies and products solve these problems and lay the
foundation for truly dynamic image access.

Used as the foundation for LizardTech’s other geospatial products including GeoExpress with MrSID, the
ExpressServer, the ExpressView Browser Plug-in and other applications, the GeoExpress SDK is a
robust toolkit suitable for complex application development needs.

The SDK provides a framework for creating image pipelines that enable developers to efficiently read,
write and manipulate data in a variety of formats, including MrSID, JPEG 2000, and other common
geospatial formats.

NOTE: The Decode SDK does not support writing .sid and .jp2 images. For information about this kind of
support, contact your regional LizardTech office.

MrSID

MrSID’s unique file format enhances the workflow of image data by compressing high-resolution images
to a fraction of their original file size while maintaining image quality. Because MrSID images are
scalable, you can reduce, enlarge, zoom, pan, or print without compromising integrity. And with the
selective decoding capability of MrSID technology, you can view any region of an image at different
resolutions. Separate encoding, optimizing, and decoding capabilities give you the flexibility you need to
create and deliver imagery to users with different bandwidth or storage resources.

MrSID has been a mainstay of the geospatial community for many years, and support for MrSID imagery
has been implemented in hundreds of applications using the GeoExpress SDK.

JPEG 2000

The JPEG 2000 image compression standard offers many of the same advantages as MrSID, plus the
added benefits of being an international standard (ISO/IEC 15444). The GeoExpress SDK allows your
applications to use JPEG 2000 compression on geospatial images with the same level of efficiency,
metadata, and large-image support already available with MrSID.

Features

The GeoExpress SDK is a toolkit for software developers. It is written in C++ to provide an object-oriented
framework for working with images using MrSID and JPEG 2000 technology.

The major features of the GeoExpress SDK include:

Architecture

http://www.lizardtech.com/purchase/other.php

GeoExpress SDK 7 User Manual

8

The SDK uses a classical image-pipeline design, providing a single, unified model for reading,
writing, and transforming image data. Developers can easily use existing components or derive
their own for additional functionality.

Classes

A set of basic classes for working with geospatial imagery are provided, including representation of
decode scene extents, memory buffers for image data, pixel data, metadata, etc.

MrSID support

The SDK provides full support for both MG2 and MG3 images, including the ability to work with
“composite” MG3 images.

JPEG 2000 support

Decoding of JPEG 2000 images is provided using the same framework as the MrSID operations,
including support for geospatial metadata.

NITF support

Decoding of NITF images is provided using the same framework as the MrSID operations,
including support for geospatial metadata.

Support for WKTs

The GeoExpress SDK supports spatial reference system metadata for MrSID, JPEG 2000, and
other georeferenced image formats.

Simple C API

For those developers who want rudimentary decoding of MrSID or JPEG 2000 imagery without the
complexity of the C++ interface, a simple C API is provided. While limited in functionality, the C API
enables access to basic image properties and scene decoding.

Image writers

The SDK provides support for writing a number of common file formats, including BIP/BIL/BSQ
(raw), Windows BMP, JPEG, and TIFF/GeoTIFF.

Image transformers

The SDK also provides a number of common image filter or transform operations, including
cropping, watermarking, mosaicking, scaling, dynamic range adjustment, datatype conversion, and
colorspace conversion.

Documentation

The documentation includes both a full User Manual and a Reference Manual, plus a number of
examples showing how to implement common tasks with the SDK.

Platforms

The SDK is available for many platforms, including Windows, Solaris (Sparc), Linux (x86), and Mac
(OS X). The Windows version provides both static and dynamic libraries (DLLs). Both 32- and 64-
bit versions are available for all platforms.

file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html

Introduction

9

Component interoperability

The GeoExpress SDK's public interfaces are coded to a clean subset of C++ language features to
avoid the interoperability problems often encountered by developers: STL incompatibilities,
exceptions and memory allocations crossing library boundaries, and advanced template
compilation.

How to Read this Manual

This User Manual gives a high-level view of the design, features and classes that make up the
GeoExpress SDK.

The chapter Architecture and Design describes the overall architecture of the image pipeline and strip-
based decoding mechanism that this SDK implements.

Further chapters briefly motivate and describe the various classes that make up the SDK. The grouping of
chapters and classes reflects the layout of the include directories: support classes, base classes, readers,
filters, and writers, etc.

Note that the descriptions provided are designed only to introduce the classes; for detailed information on
specific features, methods, etc, please refer to the Reference Manual at
doc/ReferenceManual/index.html.

Included in this manual is a chapter describing the command line applications that are included with the
SDK, as well as a glossary and an appendix of "technical notes” explaining minutiae about which you
might be curious.

SDK Contents

The contents of the GeoExpress SDK include the following:

Documentation

Cover documentation

In the top-level directory, the README.txt and CHANGES.txt files contain information about late

changes to the SDK

License

In the top-level directory, the file LICENSE.txt contains the complete licensing information for this

SDK

User Manual

The User Manual (this document) can be found at doc/UserManual/index.htm

Reference Manual

The Reference Manual, containing detailed information about each class and method, can be

found at doc/ReferenceManual/index.html

file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html
file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html

GeoExpress SDK 7 User Manual

10

Headers and Libraries

Headers

The header files for the GeoExpress SDK are located in subdirectories under the include

directory. (The Reference Manual provides full documentation for these headers.)

Libraries

The libraries for the SDK are located in the lib directory

Non-LizardTech libraries

Other non-LizardTech libraries supplied with this SDK are located in the 3rd-party directory

Sample Applications

Command-line tools

A number of tools are provided in the bin directory to aid in development, debugging, and testing.

(Documentation for these tools can be found in the chapter, Command Line Applications.)

Example Code

A number of example functions are included in the directory examples/src. The test images used by

these examples are located in examples/data. (The Reference Manual provides additional information

about these examples.)

file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html
file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html

11

Getting Started

This chapter provides some preliminary information to get you started using the GeoExpress SDK. At the
least, we suggest you skim this User Manual and the accompanying Reference Manual at
doc/ReferenceManual/index.html, then build and execute the provided example application. The

example sources should give you enough information to determine what level of SDK support your own
application will require. At that point you can go back and reread the User and Reference manuals more
closely, focusing on the areas appropriate to your situation.

NOTE: The interfaces and libraries supplied with the GeoExpress SDK are not compatible or
interoperable with the previous 6.x series of MrSID SDK releases. Existing MrSID-enabled applications
will require source code changes to make use of the SDK. For more information, see "Porting Guide" on
page 65.

System Requirements

The GeoExpress SDK is a set of C++ libraries that must be used in conjunction with the specific
development environment for your platform. The supported configurations are listed below.

For SDK usage, LizardTech recommends the use of hardware at least equal to the equivalent of a 1GHz
PC processor with 1 GB of RAM.

NOTE: Each SDK distribution supports only a single target platform. Please contact LizardTech for
additional distributions for other platforms.

Windows

Windows / Visual Studio 2003 / 32-bit

 built with: Win2K/32, VC7.1 – 32-bit

 supports: Win2K/32-bit, Win2k3/32-bit, WinXP/32-bit, Vista/32-bit

Windows / Visual Studio 2005 / 32-bit

 built with: Win2K3/64, VC8.0 – 32-bit

 supports: Win2K/32-bit, Win2k3/32-bit, WinXP/32-bit, Vista/32-bit

Windows / Visual Studio 2005 / 64-bit

 built with: Win2K3/64, VC8.0 – 64-bit

 supports: Win2k3/64-bit, WinXP/64-bit, Vista/64-bit

Windows / Visual Studio 2008 / 32-bit

 built with: Win2K3/64, VC9.0 – 32-bit

 supports: Win2K/32-bit, Win2k3/32-bit, WinXP/32-bit, Vista/32-bit

Windows / Visual Studio 2008 / 64-bit

 built with: Win2K3/64, VC9.0 – 64-bit

 supports: Win2k3/64-bit, WinXP/64-bit, Vista/64-bit

file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html

GeoExpress SDK 7 User Manual

12

Linux

Linux / Red Hat 3 / 32-bit

 built with: RHEL3/32, gcc 3.2.2 – 32-bit

 supports: RHEL3/32

 also supports RHEL4/32 and RHEL4/32, with libstdc++ compatibility library

Linux / Red Hat 3 / 64-bit

 built with: RHEL3/64, gcc 3.2.2 – 64-bit

 supports: RHEL3/64

 also supports RHEL4/64 and RHEL4/64, with libstdc++ compatibility library

Linux / Red Hat 5 / 32-bit

 built with: RHEL5/32, gcc 4.1 – 32-bit

 supports: RHEL5/32

Linux / Red Hat 5 / 64-bit

 built with: RHEL5/64, gcc 4.1 – 64-bit

 supports: RHEL5/64

Solaris

Solaris / SPARC / 32-bit

 built with: Solaris 8, v11 SunPro 5.8 compiler suite (32-bit)

 supports: Solaris 8, 9, 10 (32-bit)

Solaris / SPARC / 64-bit

 built with: Solaris 8, v11 SunPro 5.8 compiler suite (64-bit)

 supports: Solaris 8, 9, 10 (64-bit)

Macintosh

Mac OS X / Universal / Darwin 8

 built with: Mac OS 10.4 (Darwin 8) Universal, 32-bit

 supports: Mac OS 10.4 and above, 32-bit

Mac OS X / Universal / Darwin 9

 built with: Mac OS 10.5 Universal (32/64)

 supports: Mac OS 10.5 Universal (32/64)

Getting Started

13

Installation

No specific installation is required to use the GeoExpress beyond copying the SDK contents from the
media provided (CD, ISO CD image, archive from FTP site, etc.) to your local computer.

See the file INSTALL.txt in the top-level directory for complete instructions.

Linking the Sample Code

GDAL Linking Requirement

In order for applications to be created using the GeoExpress SDK, they must be linked against the
Geospatial Data Abstraction Library (GDAL) by RemoteSensing.org. The GeoExpress SDK provides a
copy of the GDAL library in <sdkroot>/3rd-party/lib and the GDAL data directory in the third-party

library directory, <sdkroot>/3rd-party/share/gdal.

For optimal behavior, the GDAL_DATA environment variable must be set to the path of the GDAL data
directory.

JPEG 2000 Linking Requirement

If using JPEG 2000, the GeoExpress SDK must be linked against third-party Kakadu libraries. These are

located in the third-party library directory, <sdkroot>/3rd-party/lib.

Technical Support

Most technical issues can be resolved using the various resources you have available. In addition to the
product documentation and the README file, LizardTech offers a knowledge base and product updates
on the LizardTech website.

Knowledge Base

http://www.lizardtech.com/support/kb/

The LizardTech Knowledge Base contains articles about known technical and usage issues and is
frequently updated.

Developer Website

http://developer.lizardtech.com

The LizardTech Developer Website provides you with the tools you need to support viewing MrSID and
JPEG 2000 formats within your application: downloadable C++ SDKs, technical notes and documentation
and a link to additional email support.

Community Forums

http://www.lizardtech.com/forums/

http://www.lizardtech.com/support/kb
http://developer.lizardtech.com/
http://www.lizardtech.com/forums

GeoExpress SDK 7 User Manual

14

The fora are a place to engage in intelligent discourse with the geospatial community. Ask questions,
provide answers, and share product usage tips with other Lizardtech customers around the world.

Product Updates

http://www.lizardtech.com/products

Updated versions of LizardTech viewer tools are available for download at no cost.

Support Plans

http://www.lizardtech.com/purchase/other.php

Protect your investment in LizardTech software by participating in a LizartTech support plan. For more
details, please contact your regional LizardTech office.

Contacting Technical Support

http://www.lizardtech.com/support

To contact technical support, visit the website at the above URL and follow links to the LizardTech
Knowledge Base or the Product Activation page. A Contact Form is also provided for issues that require
further assistance.

In an emergency, call 206-902-2845 between the hours of 8 AM and 5 PM Pacific Time.

IMPORTANT: Please have the following information available to assist in resolving your problem:

 Which version of the GeoExpress SDK you are running

 Other LizardTech products you have installed

 Which operating system you use

 How much free hard drive space your computer has

 How much RAM your computer has

 Version of compiler

 Copy of source code demonstrating the problem, simplified as much as possible

 Relevant test data to allow us to reproduce the problem

 Copy of compiler error messages if appropriate

http://www.lizardtech.com/products
http://www.lizardtech.com/purchase/other.php
http://www.lizardtech.com/support

15

Architecture and Design

This section describes some of the design principles used by the GeoExpress SDK, including the image
pipeline model, strip-based decoding and some of the C++ conventions used by the main classes.

Subsequent sections will describe the specific classes that make up the SDK.

Pipeline Design

An image processing pipeline is a system in which each image “stage” performs one specific operation on
an image or a piece of an image, and then passes the resulting image data on to the next stage. The
GeoExpress SDK uses this model to provide the ability to construct workflows that read, write, and
manipulate images in a variety of ways.

Image Stages

There are three basic types of image stages:

 Image reader: an image reader will generate (“decode”) pixel data from some external image
source, such as a TIFF or MrSID file. A reader serves as the initial stage of a pipeline and passes
pixel data to its successor stage(s).

 Image filter: an image filter or “transformer” will change the pixel data received from its
predecessor image stage(s) in some way and pass the new data on to its successor image
stage(s). Examples of filters include colorspace and datatype transformers, which change the
properties of pixels; mosaickers, which combine multiple images into one image; and histogram
stretchers, which dynamically scale the pixel values within some numeric range.

 Image writer: an image writer will produce (“encode”) some external image object, such as an
NITF or JPEG 2000 file. A writer serves as the final stage of a pipeline, receiving data from its
predecessor stage; it can be viewed as the “opposite” of an image reader.

The simplest pipeline consists trivially of just a single image reader. The reader may or may not be
connected to one or more filter stages. (As we will see later, a writer may not be required for all
workflows.)

 Some Examples

In Figure 1 an image pipeline is shown consisting of a MrSID image reader connected to a filter that
changes the image’s colorspace. Given a filename, the MrSID reader will pass pixel data to the filter,
which will transform the (presumably RGB) pixel data to grayscale pixel data.

Figure 1: Simple pipeline with MrSID image reader and color space filter

GeoExpress SDK 7 User Manual

16

Figure 2 shows a pipeline that reads raw image data (in BIP/BIL/BSQ form), performs some dynamic
range adjustments on the data in a filter stage, and writes the image out again as a raw file. Such a
pipeline might be used to massage 12-bit image data to more easily displayed 8-bit data.

Figure 2: Pipeline that reads and writes raw image data

Figure 3 shows a pipeline with two GeoTIFF image readers that are connected to a mosaicking stage,
which is in turn connected to a JPEG 2000 writer. (The GeoTIFF images are presumed to be “compatible”
in a geospatial sense.)

Figure 3: Pipeline with two image readers, a mosaicking filter and a JP2 writer

Finally, Figure 4 shows a watermarking pipeline: a JPEG watermark is inserted onto the base TIFF
image, and the result is written to a MrSID file. Note how this pipeline diagram is structurally similar to
Figure 3.

Figure 4: Watermarking pipeline

Architecture and Design

17

Implementation

Several abstract classes are used to construct the pipeline system.

 LTIImage provides the basic properties of an image, such as width and height, pixel type, etc.

 LTIImageStage extends the LTIImage class by adding functions for reading pixel data from an

image.

 LTIImageReader extends the LTIImageStage class to serve as the base class for all readers.

 LTIImageFilter extends the LTIImageStage class to serve as the base class for all filters.

The constructor for an LTIImageFilter takes an LTIImageStage.

 LTIImageWriter is the base class for all writers. It does not inherit from any of the above

classes as it serves only as a “sink”, i.e. it does not export any image properties as an LTIImage

would. The constructor for an LTIImageWriter takes an LTIImageStage.

Figure 5 shows the inheritance diagram for these classes. These classes, and classes derived from them,
are described in subsequent sections.

Figure 5: Inheritance

Another class, LTIImageStageManager, is a base class for managing a set of LTIImageStage

objects – it can be thought of as an array of such objects. It used for passing a set of image stages to
certain types of mosaic filters to reduce their resource usage. The LTIImageStageManager is also

used for “wrapping” file formats that can hold multiple images.

Strip-Based Decoding

The GeoExpress SDK is designed for workflows involving large images. To accommodate large
(gigabyte-sized) datasets, the image pipeline framework is designed to process images in advancing
horizontal strips. This reduces the amount of memory required to process the image.

To read a scene from an image, the SDK uses the following general workflow:

begin read, for given scene

foreach strip in scene, do

xxxxxread strip

GeoExpress SDK 7 User Manual

18

done

end read

These three phases are implemented in the LTIImageStage class using the methods readBegin(),

readStrip(), and readEnd(). These methods handle all the logic for decomposing the full scene into

sequential strips, and they internally call the corresponding pure virtual protected methods
decodeBegin(), decodeStrip(), and decodeEnd(), which derived image stages are required to

implement as appropriate.

The “connection” between stages is accomplished via an LTISceneBuffer object passed into the

read() call. As each strip is processed in each stage, a subsection of the buffer is used and passed

between stages; in general, no intermediate buffering is required as the same buffer is used through the
entire pipeline.

The LTISceneBuffer class stores the image data in a BSQ format for a specified width and height.

Typically the user will supply the allocated memory to be used for the image data; however, the class also
supports creation of a new buffer with a “windowed” view into an original buffer. This enables the same
region of memory to be used by multiple stages in the pipeline, without the need for excessive data
copying.

For decodes of large images, calling read() with a single large buffer is clearly inappropriate. In this

case, the client at the “end” of the pipeline can choose to explicitly implement the above decode
begin/strip/end workflow in a “pull” model, and only need to have one strip worth of image data resident at
a time. The LTIImageWriter class implements this functionality, so that derived writers can encode

large images efficiently.

Scenes

As implied in the previous section, when a read() call is made to an image stage, the scene of interest

must be specified. A scene, implemented by the LTIScene class, has three basic properties:

 upper-left x- and y-position

 width and height

 magnification (resolution)

The position is expressed in pixel space, relative to the given magnification, with (0,0) and (w-1,h-1) being
the upper-left and lower-right corners of the image, where w and h are the width and height of the image
(in pixels).

The scene width and height are also expressed in terms of pixels, but at the magnification of the scene.
That is, the width and height values represent the pixel dimensions of the scene as decoded to the output
buffer.

The magnification value is a floating point value representing the resolution or scale at which the image is
to be read. A magnification of 1.0 corresponds to the full resolution of the image (one to one); a value of
0.5 represents the image at a downsampled view of half the full width and height, and a value of 2.0
represents the image at an upsampled view of twice the full width and height. Note: Only powers of two

are supported for most image types (although filters for arbitrary resampling are available).

As an example, consider an image that is 640x480 pixels, as shown in Figure 1.

Architecture and Design

19

Figure 1: Input scene; (x,y)=(0,0) (w,h)=(640, 480) mag=1.0

The middle rectangle corresponds to a full-resolution scene that is 200x200 pixels taken from the center
of the image. This is shown in Figure 2.

Figure 2: Red Input scene: (x,y)=(320-100, 240-100) (w,h)=(200,200) mag=1.0

The inner rectangle in Figure 1 corresponds to a scene at twice the resolution (mag=2) that is also
200x200 pixels and also taken from the center of the image. This scene is shown in Figure 3. The
corresponding scene parameters as it maps back to the full-resolution image are also given; observe that
the scene is extracted into a buffer sized for 200x200 pixels, but the corresponding “footprint” in full-
resolution space is only 100x100.

GeoExpress SDK 7 User Manual

20

Figure 3: Blue Input scene: (x,y)=(160-100, 120-100) (w,h)=(200,200) mag=2.0 Corresponding
scene at mag=1.0: (x,y)=(320-50, 240-50) (w,h)=(100, 100)

The outer rectangle in Figure 1 corresponds to a scene at mag=0.5 that is again 200x200 pixels from the
center of the image; see Figure 4. The corresponding full-resolution scene parameters are again given; in
this case the footprint is 400x400.

Figure 4: Green Input scene: (x,y)=(640-100, 480-100) (w,h)=(200,200) mag=0.5 Corresponding
scene at mag=1.0: (x,y)=(320-200, 240-200) (w,h)=(400,400)

At mag=2.0 the scene is effectively sampling from an image of size 1280x960. Thus the center is 640
(=320 * mag) by 480 (=240 * mag). Likewise at mag=0.5 the scene is sampling from an image of size
320x240.

NOTE: Not all image formats natively support multiresolution decoding. MrSID and JPEG 2000, being
wavelet-based systems, efficiently support decoding at powers-of-two scales. In order to achieve this
effect with other formats a resampling filter must be applied.

Other Design Considerations

The C++ classes and functions that make up the GeoExpress SDK follow a few other general principles
and conventions. They are explained here to motivate their usage. For other, less central principles, see
"Coding Conventions" on page 73.

Status Codes

Many of the SDK member functions return status codes to report success or failure conditions, instead of
other mechanisms such as throwing exceptions. The status codes are represented using the LT_STATUS

datatype (typedef’d to an unsigned integer). Functions that return status codes must be checked for
success or failure.

Architecture and Design

21

Initializations

Heavy-weight objects requiring nontrivial work in their constructors provide an initialize() member function
that must be called immediately after invoking the object’s constructor. While this requires extra code for
the developer, it provides a means for returning status codes back to the caller without relying on
constructor-thrown exceptions.

Creator Deletes Rule

The SDK classes generally follow the “creator deletes” rule. That is, the object that allocates a new object
on the heap is responsible for deleting it as well. (The documentation notes specifically where this rule
does not hold and ownership is to be passed across a call-site.) In some cases reference counting, via
the RC<> class, is used to address this issue.

“No Magic” Rule

The functions in the SDK tend not to provide features or functionality that attempt to silently “guess” at
default values for complex situations or otherwise “just do the right thing.” While such guesses are often
correct and occasionally easier for the developer, they are just as often incorrect or serve only to mask
deeper errors or workflow inefficiencies. For example, the various decode methods can return pixels only
in the colorspace and datatype of the input image stage: no mechanism for implicit conversion is
available, e.g. via configuration of the output buffer. In this case, a datatype filter and a colorspace filter
must be explicitly built into the image pipeline.

Reference Counting

The SDK uses reference counting to manage the lifespan of objects that comprise image pipelines. This
is similar in spirit to “smart” or “auto” pointers. The static member function create() of a class should be

used to create a new instance of that class. Similarly, the (non-static) member function release()

should be used when you are done with object – for example, when the pointer to the object goes out of
scope. The retain()function should be used to hold onto an object, i.e. increment the reference count;

if you created the object, however, do not call retain(). When the last reference calls release(), the

object will delete itself.

23

The Support Classes

We begin with the set of types, classes and functions that underlie the entire SDK. These do not provide
any specific imaging functionality, but they are used as primitives for all the other classes that follow in
subsequent chapters.

The names of the types, classes, etc. described in this chapter are generally prefixed with the letters “LT”.

The corresponding header files can be found in the include/support subdirectory.

Examples of the use of many of these classes can be found in the examples directory and in the

Reference Manual at doc/ReferenceManual/index.html.

Preprocessor Constants and Basic Typedefs

The C header file lt_base.h should be included by all source files using the GeoExpress SDK. It

includes four other C headers (lt_define.h, lt_platform.h, lt_status.h, and lt_types.h),

which contain definitions for the following:

 miscellaneous preprocessor constants and macros used throughout the SDK

 preprocessor constants that define the compiler, OS, etc. used by the current target environment

 the LT_STATUS type used throughout the SDK for success/failure return values, and some

common status codes

 the typedefs used by the SDK for the primitive/integral datatypes

Status Strings

The file lt_utilStatusStrings.h declares several functions useful for mapping LT_STATUS values

into text strings that indicate the nature of the error condition encountered.

Most applications will want to use either the getRawStatusString() or getLastStatusString()

function for retrieving error strings.

The textual error strings for the integer-values LT_STATUS codes can be found by searching in the files

./include/*status.h. This may be particularly helpful during the development (debugging) process.

For details on using the error string system, consult the Reference Manual at

doc/ReferenceManual/index.html.

The LTIFileSpec Class

For portability between Unix and Windows systems and ease of use in internationalized environments,
the SDK uses the class LTFileSpec to represent file names and paths.

In all cases where the SDK requires use of a file name, for example as a function parameter, an
LTFileSpec will be used. It is the application’s responsibility to translate filenames from the app-level

representation, for example a char*, into an LTFileSpec.

The LTFileSpec class provides the following features:

file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html
file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html

GeoExpress SDK 7 User Manual

24

 creation of an LTFileSpec from a directory path and file name, as represented in a variety of

formats (multibyte, UTF-8, wchar_t, etc.)

 conversion from LTFileSpec to a variety of formats

 Unix-style dirname() and basename()

 file name extension extraction and replacement

 differentiation between relative and absolute paths

Streams

The GeoExpress SDK provides an abstract stream class, LTIOStreamInf, which provides a Unix stdio-

like interface for working with data in files or file-like objects. Rather than relying on the application to
provide a file name or a FILE*, many of the SDK functions are designed to operate on LTIOStreamInf

objects instead. This enables more portable and extensible interfaces.

The LTIOStreamInf interface requires only a small set of primitives, including:

 open() and close()

 read() and write(), using byte arrays

 seek() and tell(), using 64-bit offsets

 isOpen() and isEOF()

(For details on the precise semantics of these primitives, see the Reference Manual at
doc/ReferenceManual/index.html and "Notes on Streams" on page 78 of this documentation.)

A number of useful stream types, including files, in-memory buffers, sockets, and buffered streams, can
be implemented using the stream interface. The SDK provides the following stream implementations:

 LTIOFileStream – OS-native file support (2GB or less only)

 LTIOMemStream – in-memory, read-only buffer of fixed size

 LTIODynamicMemStream – in-memory read/write buffer, which grows as required

 LTIOBufferedStream – nontrivial buffering for an underlying LTIOStreamInf

 LTIOCallbackStream – stream implemented via user-supplied callbacks for basic operations

(read, write, open etc.)

Examples

The Reference Manual contains several examples of working with streams, including code showing how
to perform simple reads and writes and how to derive your own simple stream from LTIOStreamInf.

file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html
file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html

25

The SDK Base Classes

The image pipeline reader, writer, and filter classes that support the GeoExpress SDK’s image pipeline
system all rely on a set of base or “core” classes. This chapter introduces these classes, which represent
such constructs as pixels, geographic positions, scenes, buffers, and so on.

The names of the types, classes, etc., described in this chapter are generally prefixed with the letters

“LTI”. The corresponding header files can be found in the include/base subdirectory.

For detailed information on these classes, please refer to the Reference Manual at
doc/ReferenceManual/index.html. Examples of the use of many of these classes can be found in

the Reference Manual and in the examples directory.

Subsequent chapters of this manual introduce the actual readers, writers, and filters provided with the
SDK, including the MrSID and JPEG 2000 encode and decode classes.

Base Enums

The lti_types.h header contains a number of enums used throughout the SDK, including

LTIColorSpace and LTIColor, for indicating pixel color spaces, e.g. RGB or multispectral, and

LTIDataTypes, for indicating pixel datatypes, e.g. 8-bit unsigned integers or 32-bit floats.

Base Classes

A number of lightweight classes are used to represent primitive objects in support of the imaging
framework.

The LTISample class represents a single sample of a pixel; the properties of a sample include datatype,

color, and an optional value. The LTIPixel class represents a set of samples; the properties of a pixel

include the samples themselves and a colorspace. The LTIPixelLookupTable class is used to

represent the concept of a set of pixels in a color lookup table.

The LTIGeoCoord class represents simple geographic position information, analogous to the

conventional AUX files or world files used in many GIS systems. The properties of this class include the
projection system (WKT), the upper-left x- and y-position, the x- and y-resolution, and the two rotation

terms. Every LTIImage has associated LTIGeoCoord information.

The SDK uses delegates (see delegates in Glossary) as a means of proving the functionality of callback
functions in a more natural C++ style. The two most common delegate classes,
LTIInterruptDelegate and LTIProgressDelegate, provide mechanisms for applications

performing (potentially long-running) read() operations to make out-of-band requests to abort the

operation and to receive out-of-band notifications of percent-complete. Examples of delegate usage can

be found in the Reference Manual at doc/ReferenceManual/index.html.

Finally, the LTIUtils class contains a number of static methods generally useful for working with the

SDK. These include conversion between dynamic range representations, conversion between
scale/magnification representations, colorspace information, SDK version information, etc.

file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html
file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html

GeoExpress SDK 7 User Manual

26

The Image Classes

As described in the previous chapter, a hierarchy of several classes is used to represent images, image
stages, and the image pipeline. See Figure 1.

Figure 1: Inheritance

The LTIImage class represents the properties of an image, including:

 width and height

 pixel type (number of bands, colorspace, datatype)

 background and nodata pixel values

 dynamic range of the samples

 simple geographic coordinates

 supported magnification range

 metadata

The LTIImageStage class extends LTIImage by adding:

 strip-based read functions

 progress and interrupt delegates

The LTIImageReader and LTIImageFilter classes extend LTIImageStage in order to more closely

reflect their positions and operations in the image pipeline. These two classes are discussed in
subsequent chapters.

While the LTIImageWriter class does not inherit from any of the other LTIImage classes; it replicates

some of the same functionality (such as strip-based operations and delegate control) so that it can be
used as a client of an image pipeline. The LTIGeoFileImageWriter class is derived from

LTIImageWriter to aid in implemented image writers. LTIGeoFileImageWriter extends

LTIImageWriter to provide the ability to output to a specific form (stream or file) and optionally

generate world files.

The LTIImageStageManager is a base class for managing a set of LTIImageStage objects – it can

be thought of as an array of such objects. It used for passing a set of image stages to an

The SDK Base Classes

27

LTIImageMosaicFilter and enabling the mosaic filter to reduce its resource usage. The

LTIImageStageManager is also used for “wrapping” file formats that can hold multiple images.

The Raw Readers and Writers

Because they are the foundation of many other readers and writers, as well as being useful for
development and debugging, the SDK base classes include “raw” reader and writer classes,

LTIRawImageReader and LTIRawImageWriter.

The two raw classes read and write image data directly to binary files (or streams) with no header
information. Both support BIP/BIL/BSQ output formats and provide for big/little/host byte ordering (see
"Endianness " on page 113), plus the usual LTIImage properties of background and nodata color,

geographic position, metadata, etc.

The LTIBBBImageReader and LTIBBBImageWriter classes extend the raw reader and writer classes

by providing the ability to read and write “BBB” headers to accompany the raw image data. For
information on the supported header syntax see "Notes on BBB Files" on page 82.

Scene and Buffer Management

The two parameters to the LTIImageStage::read() function are an LTIScene object and an

LTISceneBuffer object. These together specify the region of the image to be decoded and the buffer to

put the data into.

The properties of an LTIScene are the upper-left point, dimensions, and magnification of the region to be

decoded. (For more information see "Scenes" starting on page 18.)

As a scene is a largely read-only embodiment of its properties, the LTINavigator class extends

LTIScene by adding functions to control the scene, including:

 move scene to a given location or by a given amount

 zoom to a given magnification or by a given amount

 determine the “best fit” scene of the image to a given size (within the power-of-2 resolution
constraints)

 set the scene based on upper-left, lower-right, or center points

 set the scene using geospatial position, as opposed to pixel coordinates

By using the navigator class, issues of proper rounding control and keeping the scene within the image
can be managed transparently to the user.

The LTISceneBuffer class is used to represent the in-memory buffer that will hold the data produced

by the read() call. The buffer can be supplied directly by the user, allocated internally by the class, or

inherited from another scene buffer. While the extents of the “visible” or “exposed” window of the buffer
must be at least as large as the dimensions of the scene being used for the read operation, the actual
buffer might be considerably larger; this allows for read requests to target specific regions of the buffer, as
is required for strip-based decoding workflows.

As an example, consider Figure 1, which shows an LTISceneBuffer object that has a total size of

200x100 (20,000 pixels) and a window size of 160x60 (9,600 pixels). This buffer can be used to “insert” a
scene onto the total buffer, using (40,20) as the upper-left position. (This upper-left position corresponds
to byte 200*20+40 of the buffer, assuming an 8-bit, 1-banded image.)

GeoExpress SDK 7 User Manual

28

Figure 1: LTISceneBuffer

The data in the scene buffer is internally stored in a packed BSQ format. By supporting only one data
layout, the complexity of the various image stages and the need for additional memory-to-memory copies
is reduced. However, when constructing decoder pipelines the client often needs the data organized in
some other fashion, so the scene buffer class supports these “import/export” features:

 copy data into the buffer from memory (in packed BSQ or BIP forms)

 copy data into the buffer from a stream (in packed BSQ or BIP form)

 copy data from the buffer to memory (in packed BSQ or BIP form)

 copy data from the buffer to a stream (in packed BSQ or BIP form)

 copy data from the buffer to memory, with full control over layout and padding (such as padding of
rows to satisfy alignment constraints)

The copying is performed relative to the visible window of the buffer, not the total buffer. For the BSQ
memory functions, the data may be held as one large BSQ buffer or as one individual buffer for each
band.

29

Concrete Image Filters and Writers

The GeoExpress SDK uses two types of classes – image filters and image writers – for transforming and
encoding images.

Image Filters

The LTIImageFilter class is derived from the LTIImageStage class and is used as the base class

for implementing specific (and generally simple) image transformations. The following image readers are
supplied with this SDK:

 LTIBandSelectFilter: This class creates a single image which is a composition of selected

bands from a set of source images. It can be used, among other things, to remap the color bands
of a single image (formerly LTISampleMapFilter) or to merge several greyscale images into a

single image (formerly LTIColorCompositeFilter).

 LTIColorTransformer: changes the colorspace of an image. The supported transforms include

transforming to and from RGB, grayscale, and CMYK.

 LTICropFilter: crops the image to a smaller width and height. Note that this is a reduction in

image size; this is a true crop, so some data will be lost.

 LTIDatatypeTransformer: changes the datatype of the samples of the image. The supported

transforms include transforming to and from uint8, uint16, and float.

 LTIDynamicRangeFilter: adjusts the sample values of the image to fit the given dynamic range

by scaling the values by appropriate amounts. This is useful as a preprocessing step to displaying
datasets that don't use the full precision of their datatypes, for example 7- or 12-bit data.

 LTIEmbeddedImage: creates a new image of the given size, containing the input image

"embedded" within it. This class is used to make an image "larger" by increasing its width and
height without actually stretching the image itself, for example to place an image on a larger
"canvas" so as to provide it with a larger background. (This class is used by the
LTIMosaicFilter class to simplify certain computations by making all the input images map to

the same underlying grid shape and size.)

 LTIMosaicFilter: creates a single mosaicked image from a set of input images. The set of

input images are all assumed to be in the same coordinate space. In general, all the images must
have the same resolution; differences that are within a small epsilon or exactly a power of two are
optionally allowed.

 LTIMultiresFilter: extends the magnification range of an image to allow decodes at different

resolutions than the image stage would normally allow. Note that this class is not the same as the
LTIStaticZoomFilter class, which scales the magnification statically for the pipeline when

initially constructed; this class allows for the zoom level to be extended for an individual decode
operation.

 LTIStaticZoomFilter: magnifies the image by a fixed amount. In effect this simply changes

the width and height of the image statically, i.e. for the life of the pipeline.

 LTITranslationFilter: translates (moves) the geo coordinates of the image.

 LTIViewerImageFilter: performs certain datatype and colorspace transforms on an image to

make it more readily displayable. This class wraps the LTIDataTypeTransformer,

LTIColorTransformer, and LTIDynamicRangeFilter classes in order to transform the input

image into an 8-bit datatype with colorspace grayscale or RGB, as this is the format required by
most display engines.

 LTIWatermarkFilter: inserts a watermark image onto the current image stage at a given

position. The "watermark" is represented as an input image stage and must have the same pixel
properties (colorspace, datatype, etc.) as the image it is to be inserted into.

GeoExpress SDK 7 User Manual

30

Examples

The Reference Manual at doc/ReferenceManual/index.html contains several examples of working

with image filters, including code showing how to insert a filter into an image pipeline and how to derive

your own simple filter from LTIImageFilter.

Image Writers

The LTIImageWriter class is the base class for implementing specific file format writers. While not

derived from any of the other LTIImage classes, it is nonetheless designed to act as an “end” of the

image pipeline in order to support writing out an image in a stripwise fashion. The following image writers
are supplied with this SDK:

 BBBImageWriter – writes the BIP/BIL/BSQ raw format

 BMPImageWriter – writes the Windows BMP format

 GeoTIFFImageWriter – writes the GeoTIFF format

 JpegImageWriter – writes the JPEG format (Note: "original" JPEG, not JPEG 2000)

 TIFFImageWriter – writes the TIFF format

Examples

The Reference Manual at doc/ReferenceManual/index.html contains several examples of working

with image writers, including code showing how to write a scene with an LTIImageWriter and how to

derive your own simple writer from LTIImageWriter.

file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html
file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html

31

MrSID Support

MrSID offers a solution to the challenges and a toolkit for the opportunities digital imaging presents.
Because encoding to MrSID results in a lossless, single-source image, MrSID yields better storage
economy, more efficient transfer of data, and improved workflow. A single, highly compressed, high-
quality image serves as the source for any data requested from that image, optimized for instant viewing
on any device.

The acronym MrSID stands for Multi-resolution Seamless Image Database. This wavelet-based
technology was acquired by LizardTech in its original form from Los Alamos National Laboratories
(LANL), where it was developed under the aegis of the U.S. government for storing fingerprints for the
FBI. LizardTech was formed to commercialize and further develop the technology, and MrSID quickly
became the standard for viewing, distributing and storing raster imagery in geographic information system
(GIS) environments. MrSID is the technology and image format that all major geospatial software
applications support today.

MG3 and MG2

The current version of the MrSID technology and file format is known as MG3 (“MrSID Generation 3”). As
described below (see "Key Features of MG3" on page 31), the key features of MG3 include:

 lossless encoding

 optimization (by scale, quality, or region)

 selective decoding (by scale, quality, or region)

In addition, MG3 provides the ability to store multiple images in a single file known as a “composite” MG3
file. This allows for large MrSID images to be “updated” when new data for certain areas becomes
available. The “tiles” that make up the composite are complete and valid images unto themselves, and
may be in the MG3, MG2, or JPEG 2000 formats. The MG3 reader (decoder) class allows the user to
inspect the type and geographic extent of each tile in a composite image, and any subset of the tiles may
be specified when opening the composite image for decoding. Internally, the SDK handles the logic of
mosaicking the specified tiles together.

The original version of MrSID, known as MG2 (MrSID Generation 2) was the first commercial version of
the compression technology and file format originally developed at Los Alamos National Laboratory. MG2
supports selective decoding (by scale or region), but unlike MG3 it does not support optimization
workflows, lossless encoding, or composite images (although an MG2 image can be a tile within an MG3
composite). Additionally, the quality of MG3 compression is in many cases somewhat better than that of
MG2.

Key Features of MG3

NOTE: The name MrSID on this page refers most often to the MG3 format. Although general statements
are made in which the MrSID technology is referenced apart from any particular version or format,
inclusion of MG2 in any particular instance should not be assumed.

The following features are enabled by MrSID’s planar architecture. A plane, or “bitplane,” is an efficiently
encoded representation of a subset of the image data corresponding to a degree of image quality and
level of resolution. It is not necessary to fully understand bitplanes to appreciate these features, though
bitplanes are described in the next section (Fundamentals of MG3).

The following three statements summarize what is necessary to know about MrSID:

GeoExpress SDK 7 User Manual

32

 A MrSID image is a set of bitplanes.

 All bitplanes are essentially optional. A high-quality image is still achievable even when not all
bitplanes are retained.

 A transaction of MrSID image data is simply the extraction and delivery of exactly and only those
bitplanes necessary to construct a view according to desired scene, scale, or image quality,
independent of bandwidth constraints.

Lossy and Lossless Encoding

A lossy image is one in which some data has been discarded. A lossless image is one in which all data is
retained. A “visually lossless” image is one that is lossy, but to a degree the human eye cannot even
detect.

Encoding to MrSID yields an absolutely lossless image. This means the encoding process can be
reversed to recreate the original TIFF or other input file bit for bit. Lossless MrSID images are smaller
than the corresponding input files by a ratio averaging 2:1 for 24-bit color images, as high as 6:1 for other
image types. A lossless MrSID image can thus be stored in half or less of the space required for the
original, yet from it any number of lossy images optimized to client requirements can be created on the
fly.

MrSID preserves the image quality of TIFFs while providing smaller “files” and greater flexibility of access
than other compressed image formats such as JPEG, thus bridging the tradeoff between file size and
image quality.

Because a lossless MrSID image can be used as the single source for any view and is already
significantly smaller than the original TIFF or other input file, users may not need to take advantage of
MrSID beyond the initial lossless encoding. But if further reduction in size or optimization for a particular
viewing environment is desired, a visually lossless MrSID image can be created at high compression
ratios. No matter what the viewing, storage or transfer requirements, MrSID yields the best image quality
in the smallest “file.”

Selective Decompression

From a server perspective, selective decompression means that a transaction is not dictated by
underlying storage media requirements but can scale with the clients’ needs. Instead of an entire image,
only relevant portions are sent and only to the scale and degree of quality required. If a user requests just
the center scene of an image to be downloaded to a handheld device, the server need only deliver the
data required to reconstruct the center portion of the image at a resolution optimized for that viewing
environment.

On the client side, selective decompression means that panning, zooming, and other adjustments to the
view do not require the image to be completely downloaded again. Only data that is not already cached
on the user’s device needs to be delivered. This enables on-the-fly panning and zooming.

Optimization

Instead of having a two-phase architecture in which an image is encoded once into a lossy compressed
file of a particular size, then decoded for viewing, MrSID is built around three phases: an initial lossless
encoding process, an optional and repeatable optimizing process and a selective decoding process, or
selective decompression. These three phases are shown in Figure 1.

MrSID Support

33

Figure 1: MrSID's three-phase architecture

Optimization need not be a separate process. Users can compress images and perform other
optimizations as part of the encode process if they wish. MrSID offers optimization as a separate process
in order to provide more flexibility and capitalize on the benefits of lossless encoding.

As stated above, a MrSID image is simply a set of bitplanes. Bitplanes capture a specific level of image
quality. The Optimizer “chooses” which bitplanes are necessary to create the view or new image
requested. The fact that MrSID treats each bitplane individually enables the extreme flexibility and
compressibility of MrSID images.

 A user may optimize a MrSID image in any combination of the following three options:

a. by scene – retaining only the data relevant to a given scene within the image, but for all zoom
levels and at full quality (losslessly).

b. by scale – removing bitplanes of all degrees of quality and throughout the entire image for
unwanted zoom levels (finer resolutions).

c. by quality – removing bitplanes representing some of the image quality from all zoom levels for the
whole image.

Retaining high quality in one area and discarding quality in another is an example of the combination of
options a and c above, and is also known as “region of interest” or ROI selection. Traditional compression
(overall file-size reduction) in MrSID is described by option c.

Optimization improves workflows and storage efficiency by enabling a single MrSID image to provide all
“versions” of an image that might be needed on the server side or requested by the client side. MrSID is
the only image format that offers optimization.

Image Type Support

MrSID accommodates many of the formats that make up the wide range of image types. In addition to 8-
bit RGB images, MrSID also supports medical imagery (including 16-bit grayscale), aerial and satellite
imagery, bitonal fax imagery, and multispectral data, images with additional bands containing information
such as elevation or additional frequency spectra.

GeoExpress SDK 7 User Manual

34

In addition to all standard metadata, MrSID accommodates arbitrary, user-defined metadata used for
storing color profiles and other information.

Res-up

MrSID res-up interpolation improves workflow efficiency by enabling users to print poster- or even
billboard-sized images from the same “file” they use for thumbnail images. For example, instead of
waiting to receive tens or hundreds of megabytes of image data, printers running MrSID can res-up a
1MB image instead. With MrSID, it is not necessary to export an image into a separate scaling application
to view or print an image at greater than 1:1 resolution.

Security

Access to all or any portion of an image may be restricted to those with certain access rights such as
viewing, printing, and saving. Bits corresponding to locked portions are encrypted during transmission. No
additional formats, application layers or other tools are necessary for users to benefit from MrSID’s
security features. The current version of MrSID supports locking of the entire image, and has supported
such since MrSID version 2.0. The MrSID technology allows for locking ROIs or planes in the image
selectively.

Color Transform Flexibility

MrSID allows for flexibility in the selection of color transform. The default color transform for RGB images
is YIQ, in which Y represents the luminance value and I and Q represent chrominance values. For better
compression ratios, MrSID allows for additional, user-supplied color transforms appropriate to particular
image data. The MrSID technology also allows additional color transforms to be used.

Fundamentals of MG3

NOTE: The name MrSID on this page refers most often to the MG3 format. Although general statements
are made in which the MrSID technology is referenced apart from any particular version or format,
inclusion of MG2 in any particular instance should not be assumed.

Encoder

Most simply put, encoding in MrSID means “converting to a lossless MrSID image.” But that’s saying a lot.
In the Encoder, image data undergo a wavelet transform, a color transform and lossless compression
through a binary arithmetic encoder (BAC). Also, the Encoder divides an image into parts called
subbands, subblocks, color components, and bitplanes.

The Encoder algorithms move the image data from pixel space, in which pixels are located by x and y
coordinates, to wavelet space, in which pixels become wavelet coefficients identified by subband (S),
subblock (B), color component (C) and bitplane (P). Each bit in a wavelet coefficient has an SBCP index
from which its color characteristics and position in the image are reconstructed.

The color transform expresses RGB (red, green, blue) color data as YIQ data. Putting the wavelet
coefficients into “YIQ space” decorrelates the color bands and allows the Encoder to reduce redundancy
of information. MrSID handles color and grayscale subbands the same way, so in this paper we will
restrict our discussion and illustrations to grayscale for the sake of simplicity.

MrSID Support

35

The BAC examines each subblock for patterns in the bitplanes that can be more efficiently expressed,
which leads to lossless encoding of a MrSID image with a 2:1 compression ratio (as high as 6:1 for some
medical images).

Figure 1: Creation of zoom levels

GeoExpress SDK 7 User Manual

36

 Zoom Levels and Subbands

Zoom levels are created in the encoding process. Each zoom level is one half the height and width (a
quarter of the overall size) of the previous, as shown in Figure 1. The maximum number of zoom levels an
image can have is determined by the size of the image. The larger the image the more zoom levels it can
have, though the user may choose to create fewer than the maximum number upon encoding.

For each zoom level, subbands are created corresponding to frequency combinations yielded by the
wavelet transform, as shown in Figure 2. At this stage all the wavelet coefficients are still present. The
subbands are each one quarter the size of their corresponding zoom level. The lowest subband contains
the wavelet coefficients that will make up the viewable image for the next smaller zoom level. The data in
the other subbands are retained for reconstructing that zoom level at full quality.

MrSID Support

37

Figure 2: Creation of subbands

Subblocks

 To facilitate a finer degree of random access and thus enable selective decompression, Subbands are
divided into subblocks, as shown in Figure 3. While the subbands vary in size according to their

GeoExpress SDK 7 User Manual

38

corresponding zoom levels, each subblock nominally measures 64 x 64 pixels, which means subbands
from zoom levels with greater dimensions will be composed of a greater number of subblocks. If a color
image is being encoded, each subblock is pulled from just one of the three YIQ color components.

Figure 3: Subblocks

MrSID Support

39

Bitplanes

Subblocks are made up of bitplanes. Understanding the nature of MrSID’s planar construction helps in
appreciating its immediate benefits and potential applications.

As stated earlier, subblocks are created measuring 64 x 64 pixels. The 4096 pixels thus represented in
the subblock become 4096 wavelet coefficients, each represented by a string of 32 bits. Each subblock is
made up of 32 bitplanes, as shown in Figure 4. The first and thus most significant bits from all 4096
wavelet coefficients are represented together on the first bitplane. All the second bits are collected on the
second bitplane. The third bitplane contains all the third bits, and so on. Image detail increases with each
bitplane. (The last bits of a wavelet coefficient often represents random data or “noise” in the image.)
Also, the last bitplane is meaningless without the first bitplane. In fact, within a given subblock each
bitplane is dependent upon all the bitplanes before it.

Figure 4: Bitplanes

GeoExpress SDK 7 User Manual

40

Ultimately, then, a MrSID image is a set of bitplanes. When a user requests an image or any portion of an
image, those bitplanes and only those bitplanes are delivered that are necessary to render the desired
quality, zoom level, or scene. If the user chooses another zoom level, pans left or picks a different scene,
or requests a different degree of image quality, the additional bitplanes required for the new view are
extracted from the single-source MrSID image and delivered.

If packets are dropped in delivery, an image is still displayed. There will simply be bitplanes that are not
present in the assembled image, resulting in some local degradation of quality, which may or may not be
visible to the human eye.

Optimizer

Significant properties of the Optimizer are its speed and the fact that a MrSID image can be optimized
multiple times. Optimizing a MrSID image is optional; it can be performed during encoding or as a
separate process. The customizations the optimizer can perform are lossy compression for faster delivery
or more efficient storage, cropping for a new view of the image, reordering for faster viewing, and locking
portions or all of an image for security.

Fidelity Index

Central to the role of the Optimizer is the Fidelity Index. Upon encoding, each bitplane in a MrSID image
is optionally assigned a Fidelity Index, which tells the Optimizer how “important” the bitplane is, relative to
all the others, in reconstructing the image. For example, the thirty-first bitplane in any given subblock
contains the last bit of all 4096 wavelet coefficients in that subblock. Because these last bits typically
describe random image data or “noise,” this bitplane could be discarded with less image degradation than
could the zeroeth bitplane, which contains all the “first bits.” The thirty-first bitplane’s lower priority is
reflected in its Fidelity Index. Figure 5 shows how wavelet coefficients are identified in the absence of
associated bitplanes.

MrSID Support

41

Figure 5: Understanding how bitplanes work

The function of the Optimizer is to select those bitplanes that best match the data request it receives and
prepares them for delivery. In selecting bitplanes, the Optimizer analyzes several factors, including which
color component, subband, and subblock each bitplane comes from. The most important factors,

GeoExpress SDK 7 User Manual

42

however, are the bitplane’s Fidelity Index and its length (the length of its corresponding bit string) after
lossless encoding.

If each bitplane’s Fidelity Index and length are recorded “in the file”, then they can be accessed at any
time for additional optimization of the image.

Lossy Compression

If a MrSID image is a set of bitplanes, then lossy compression is merely a matter of throwing away
bitplanes, starting with the least important or “noisiest” ones. The great flexibility of MrSID images stems
from the separation of the optional lossy compression process from the initial encoding process.

Removing zoom levels is another way of reducing the size of a MrSID “file” via the Optimizer. All the
bitplanes that make up the subblocks and subbands of unwanted zoom levels are discarded. Note that
zoom levels are removed progressively from larger (zeroeth) to smaller (icon).

Lossy compression and removing zoom levels are options that result in a new MrSID image. The original,
lossless MrSID image is retained.

Cropping

Cropping reduces the image to a smaller scene by extracting only the bitplanes required for the scene.
Cropping permanently removes subblocks from certain subbands and is performed to create a new
single-source image.

Reordering

Reordering is changing the arrangement of bitplanes in a “file.” The most important data, represented by
the thumbnail or icon level, are placed near the beginning of the “file” for faster access. This process may
allow subsequent optimizations or decoding to be more efficient.

Locking

Because every bitplane in a MrSID image can be treated individually, any portion of an image can be
locked to prohibit viewing. Locking a region involves isolating and encrypting the bitplanes that make up
the relevant subblocks and subbands in each zoom level. For example, a license plate in the lower left
corner of an image will appear in the subblocks that make up that corner of each of the zoom levels. Any
combination of bitplanes can be locked. Encrypted bitplanes are protected with a password.

Decoder

MrSID’s selective decompression occurs in the Decoder. The MrSID Decoder runs all the encode steps in
reverse. All selected bitplanes are run through the BAC, where the coplanar subblocks are reassembled
and wavelet coefficients processed with an inverse wavelet transform.

Other formats require that the entire file be decoded before any of it can be used. Because it decodes
only the required data, MrSID is more efficient in both memory and speed. Moreover, a MrSID viewer is a
client that invokes the Decoder, so that viewing a MrSID image is merely an application of the decode
process.

MrSID Support

43

Speed and Memory Cost

MrSID’s three component processes operate at different speeds, which are dependent on different
factors. Encoding time scales with image size and generally is the longest process. Encoding an image
means creating a lossless, single-source MrSID image.

The Optimizer works very quickly, since it is I/O bound and performs little computation. It receives a
request and extracts bitplanes accordingly. Optimization time is proportional to the size of the input file or
image. Lossless images take longer to optimize because all the original bitplanes have been retained and
must be examined.

Decoding time scales according to compression ratio. That is, the speed of decoding depends chiefly
upon how many bitplanes have been retained. Since each retained bitplane is examined individually upon
decoding, the more bitplanes discarded, the shorter the decode time.

Because MrSID’s Encoder uses a pipelined wavelet transform for more efficient memory usage, the
memory required to encode an image is proportional to the width of the image. The height of the image is
irrelevant. Similarly, the Decoder uses a pipelined inverse wavelet transform, so that the width of an
extracted portion determines how much memory is used in decoding.

MrSID Readers

The GeoExpress SDK provides a class for reading MrSID imagery, both MG2 and MG3.

 The MrSIDCompositeImageReader class supports reading from any MrSID image, MG2 or

MG3. (If the image is an MG3 composite, all tiles in the image will be used.)

 The MG3CompositeImageReader class supports reading only from MG3 images. This class

provides an interface for querying the tile contents of composite MG3 images, as well as the ability
to select at construction time which tiles to select to represent the image.

This class supports both stream inputs as well as filenames. The ability to control whether world files are
honored is also provided.

The class has constructor parameters to control resource usage by the object. The “memory usage”
parameter allows the user to choose to use more memory to hold the MrSID data in memory, for
improved performance at the cost of higher memory usage. By limiting the memory usage, certain decode
operations may be slower but more images may be opened simultaneously.

Similarly, the “stream usage” parameter allows the user to choose to keep the underlying file handle (or
stream) always open or open only when required by the decoder. The always-open mode may reduce file
I/O overhead, but at the cost of potentially critical resources (file handles) on some systems.

45

JPEG 2000 Support

JPEG 2000 is the state-of-the-art successor to the popular JPEG compression standard. The original
JPEG was based on the discrete cosine transform (DCT) and Huffman encoding and is not suitable for
current workflows relying on high quality imaging, lossless encoding, or very large images.

Algorithmically, JPEG 2000 and MG3 are very similar. Both are wavelet-based systems which use
arithmetic encoding to support lossless compression, image optimization workflows, and selective
decoding by quality, resolution, and region. Details of the algorithms and the underlying file formats are,
however, quite different; MG3 and JPEG 2000 data and files are not interchangeable.

As JPEG 2000 is an international standard (ISO/IEC 15444), an increasing variety of products can create,
read, and work with JPEG 2000 imagery. By using the GeoExpress SDK to encode and decode your
imagery, your applications will be more valuable in open standards environments.

NOTE: JPEG 2000 is an extremely complex framework for managing compressed imagery, with a
correspondingly complex set of encoding options. The choice of encoding parameters you should use will
depend greatly on your performance requirements and anticipated workflows. See LizardTech’s
developer website (http://developer.lizardtech.com/) for current information.

The JPEG 2000 Reader

The J2KImageReader class is used to read JPEG 2000 files or streams.

This class supports a number of query functions to find information about how the image was encoded
with JPEG 2000, as well as some decode-time functions to control how the image will be decoded.

Please consult the Reference Manual at doc/ReferenceManual/index.html for details.

NOTE: The J2KimageReader class cannot be used to read “old-style” JPEG files.

http://developer.lizardtech.com/
file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html

47

NITF Support

The National Imagery Transmission Format (NITF) standard was created by the Department of Defense
as a means of formatting digital imagery and imagery-related products and exchanging them among
members of the intelligence community, the Department of Defense (DOD), and other government
departments and agencies. NITF was created partly because government agencies needed a single
common image representation that supported certain metadata features and workflows. While it is called
an image format, NITF is more precisely described as a file format that wraps one or more image files and
their corresponding metadata.

The DSDK supports reading NITF files and includes the following features:

1. support for image segments with JPEG and JPEG 2000 compression
2. some support for files containing multiple image segments
3. some support for TRE data

NOTE: Text, label, and symbol segment types are not supported.

Important Notes On NITF Compliance in the GeoExpress SDK

This version of the GeoExpress SDK follows the following NITF standards:

1. versions 2.1 (MIL-STD-2500C, Draft April 2004) and 2.0 of the NITF file format for reading
2. the BIIF Profile (BPJ2K01.00, Draft January 2004) including the J2KLRA TRE

NITF v1.1. files are not supported.

Some of these NITF standards are not yet ratified; future SDK releases will track the evolution of these
standards to ensure interoperability.

The architecture of the NITF classes may change in a future release, so as to provide simpler and more
efficient access to NITF features such as multiple image segments and TRE data.

The motivated reader may wish to learn more in "Georeferencing of NITF Imagery" on page 95.

The NITF Reader

The NITFImageManager and NITFImageReader classes are used to read NITF files.

Unlike the other image readers, the NITFImageManager class must be used to construct an

NITFImageReader object for a given image segment via the createReader method. The

NITFImageReader object behaves like any other image reader in all other respects. The Reference

Manual at doc/ReferenceManual/index.html contains several examples of how to read an NITF

image.

The following restrictions apply to the reading of NITF imagery:

 Only uncompressed (raw), simple JPEG, and JPEG 2000 segments are supported. (Note: JPEG
files with explicit quantization tables are not supported.)

 All modes (blocked, masked, etc) are supported.

file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html
file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html
file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html

GeoExpress SDK 7 User Manual

48

 Images must be of datatypes, colorspaces, etc, that the SDK normally supports (typically unsigned
8- and 16-bit data, of 1, 3, or n bands).

 Color lookup tables (LUTs) are not supported.

 All CLEVELs are supported.

 Label, text, graphic/symbol, DES, and RES segments are recognized and parsed, but access to
the data within them is not supported.

 When reading a NITF image, all file header and image segment fields are stored in the metadata
for the image (see "NITF Input Metadata" on page 48).

 Each TRE is read and stored as a single binary metadata tag/value pair (again, see "NITF Input
Metadata" on page 48). Some TREs are recognized, however, and have their constituent fields
extracted into tag/value pairs as well, including: J2KLRA, USE00A, STDIDC, PIAIMC, and

RPC00A/B.

NITF Input Metadata

NOTE: The following discussion assumes familiarity with the NITF specification.

When reading a NITF file, the SDK stores many NITF fields as metadata, for example as tag/value pairs
in MrSID imagery (see "Metadata Tags" on page 99).

In general, the tag name is of the form

NITF::xxnnn::field

where xx is a two letter code representing the NITF segment (IM for image, FH for file header) and nnn is

the NITF segment number. TRE fields contain the prefix "TRE_". Specifically, the SDK stores input fields

in metadata tags as described in the following tables.

File Header Fields

The SDK stores file header fields in the following tags:

File Header Fields

NITF Field GeoExpress Tag

FHDR NITF::FH000::FHDR

FVER NITF::FH000::FVER

STYPE NITF::FH000::STYPE

OSTAID NITF::FH000::OSTAID

FDT NITF::FH000::FDT

FTITLE NITF::FH000::FTITLE

ONAME NITF::FH000::ONAME

OPHONE NITF::FH000::OPHONE

NUMI NITF::FH000::NUMI

NITF Support

49

NITF Field GeoExpress Tag

NUMS NITF::FH000::NUMS

NUML NITF::FH000::NUML

NUMT NITF::FH000::NUMT

NUMDES NITF::FH000::NUMDES

NUMRES NITF::FH000::NUMRES

Of the above, the SDK allows the user to set the values for OSTAID, FDT, FTITLE, ONAME, and OPHONE

when encoding NITF images.

Security-Related Fields

The SDK stores security-related fields from the file header (unless they are blanks) in the following tags:

Security-Related Fields

NITF Field GeoExpress Tag

SCLAS NITF::FH000::SCLAS

SCLSY NITF::FH000::SCLSY

SCODE NITF::FH000::SCODE

SCTLH NITF::FH000::SCTLH

SREL NITF::FH000::SREL

SDCTP NITF::FH000::SDCTP

SDCDT NITF::FH000::SDCDT

SDCXM NITF::FH000::SDCXM

SDG NITF::FH000::SDG

SDGDT NITF::FH000::SDGDT

SCLTX NITF::FH000::SCLTX

SCATP NITF::FH000::SCATP

SCAUT NITF::FH000::SCAUT

SCRSN NITF::FH000::SCRSN

SSRDT NITF::FH000::SSRDT

SCTLN NITF::FH000::SCTLN

The SDK allows the user to custom set all of the above.

GeoExpress SDK 7 User Manual

50

Image Segment Fields

The SDK stores image segment fields in the following tags:

Image Segment Fields

NITF Field GeoExpress Tag

IID1 NITF::IM001::IID1

IDATIM NITF::IM001::IDATIM

TGTID NITF::IM001::TGTID

IID2 NITF::IM001::IID2

ISORCE NITF::IM001::ISORCE

ICORDS NITF::IM001::ICORDS

IGEOLO NITF::IM001::IGEOLO

NICOM NITF::IM001::NICOM

ICOM1 NITF::IM001::ICOM1

... ...

ICOM9 NITF::IM001::ICOM9

The SDK allows the user to custom set these image segment fields: IID1, IDATIM, TGTID, IID2,

ISORCE, NICOM, ICOM1...ICOM9.

Additional Notes

In addition, the SDK does the following:

 handles the security fields in the Image Segment as they are handled in the file header

 stores all detected TREs in metadata as binary data. For example, USE00A data would be stored
as an array of bytes using the following tag: NITF::IM001::TRE_USE00A

 explicitly recognizes the following TREs when reading in a NITF file: J2KLRA, USE00A,
STDIDC, PIAIMC, RPC00A/B

For these TREs, additional metadata entries are created corresponding to each of their
constituent fields. For example, PIAIMC data is represented as follows:

NITF::IM001::TRE_PIAIMC_CLOUDCVR

NITF::IM001::TRE_PIAIMC_SRP

NITF::IM001::TRE_PIAIMC_SENSMODE

NITF::IM001::TRE_PIAIMC_SENSNAME

...

51

Metadata Support

Metadata is data about an image, as distinct from the actual image data (pixels). This includes everything
from the basic width/height and datatype information up to geospatial information, background colors,
creation dates, etc.

The GeoExpress SDK uses a key/value pair system for recording tags and their values, similar to the
system used by TIFF and GeoTIFF. A “metadata database” containing a set of records, one for each
key/value pair, is associated with each image. This chapter describes the basic features and classes of
this metadata system.

The metadata classes can all be found in the headers in the include/metadata subdirectory. Full

details and examples may be found in the Reference Manual at doc/ReferenceManual/index.html.

The Metadata Record

A single key/value pair is represented by the LTIMetadataRecord class. This class has several

properties:

 tag name

 datatype

 dimension information (number of dimensions and dimension array)

 data pointer

The tag name is represented as an ASCII string. The well-known strings (those for common metadata
tags) have corresponding values in the LTIMetadataTag enum. Either form may be used for most

metadata operations.

The dimension information describes the “shape” of the data element(s), which is pointed to with a void*

pointer.

 If the data is a single value (scalar), the number of dimensions is 1 and the dimension array is a
one-element vector whose entry is one, i.e. int dims[1] = { 1 }.

 If the data is a vector of values, the number of dimensions is 1 and the dimension array is a one-
element vector whose entry is the number of the values, i.e. int dims[1] = { 10 } for a 10-

element data record.

 If the data is an arbitrary vector of values, the number of dimensions is n and the dimension array

is an N-element vector whose entries are the lengths of each dimension, i.e. int dims[2] = {

4,5 } for a 20-element data record formatted as a 4x5 array of values.

In all cases, the data values will all have the same data type. The void* pointer is cast to the appropriate

type and dereferenced accordingly to access the true value.

The LTIMetadataRecord class contains a number of helper functions to get and set the data values.

The class LTIMetadataDumper can be used to pretty print a metadata record as a development and

debugging aid.

file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html

GeoExpress SDK 7 User Manual

52

The Metadata Database

Each image stage has an associated LTIMetadataDatabase object. This database supports several

types of operations:

 query for a record

 add a record

 retrieve a record

 remove a record

Records may be accessed via tag name or (positional) record number.

Each image stage is responsible for maintaining the consistency of its own database. For example, if an
image filter changes the width of its image, the corresponding metadata tag must be updated in the local
copy of the database. In most situations the metadata database for an image pipeline should be
considered to be the database presented by the last stage.

The class LTIMetadataDumper can be used to pretty print a metadata database as a development and

debugging aid.

The Tags

Certain metadata tags are set by almost all image stages and are known as the “classical” metadata tags:

 width and height

 datatype

 colorspace

 dynamic range

 background and nodata pixel values

 geospatial (x,y) origin, x- and y-resolution, and rotation

 original file size

 original filename

The corresponding image tag names can be found in the LTIMetadataTag enum. See "Metadata Tags"

on page 99 for further details.

53

The C API

The GeoExpress SDK is a large set of C++ classes containing many features and designed for many
different needs and workflows. There is a corresponding cost in learning and development time to
working with the full SDK.

Recognizing this cost, the SDK also provides a small, C-based API for developers who wish to quickly
implement or prototype simple decode support for MrSID, JPEG 2000 and NITF images.

The C API provides the following features:

 decode support for MrSID, JPEG 2000 and NITF

 basic metadata access

 file-based and stream-based decodes

 BSQ format output

Major features not available through the C API include:

 access to the image pipeline architecture (readers, filters, writers)

 support for other file formats

 encode support

 progress and interrupt delegates

NOTE: The C API is built on top of the C++ API. Although the linkage is done with C names, use of C++
runtime libraries is still required.

This chapter describes the basics of the C API, as implemented in the two files ltic_api.h and

lt_ioCStream.h, in the include/c_api subdirectory. The Reference Manual at

doc/ReferenceManual/index.html contains complete details and examples.

Image Support

The functions for opening and closing existing MrSID, JPEG 2000 and NITF images are:

 ltic_openMrSIDImageFile()

 ltic_openMrSIDImageStream()

 ltic_openJP2ImageFile()

 ltic_openJP2ImageStream()

 ltic_openNITFImageFile()

 ltic_closeImage()

These functions all take either a filename or a stream, denoting the input, and a pointer to an “image
handle” of type LTICImageH. This handle is used to provide the context for all other functions in the C

API. Returned status codes are used to indicated success or failure.

To close an image, the ltic_closeImage() function is used.

Due to rounding and file format differences, you should not manually calculate the image dimensions at
magnification. Instead, you should use the ltic_getDimsAtMag() function to ask the SDK for the

dimensions of the image at a given magnification.

file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html

GeoExpress SDK 7 User Manual

54

Basic image properties such as width, height, colorspace, geospatial position, etc, are accessed using
simple query functions. For example, the width of an image is determined by calling this function:

lt_int32 ltic_getWidth(const LTICImageH image)

Decode Support

To decode a scene from an image only one function call is required:

LT_STATUS ltic_decode(LTICImageH image,

xxxxxxxxxxxxxxxxxxxxxxdouble xUpperLeft,

xxxxxxxxxxxxxxxxxxxxxxdouble yUpperLeft,

xxxxxxxxxxxxxxxxxxxxxxdouble width,

xxxxxxxxxxxxxxxxxxxxxxdouble height,

xxxxxxxxxxxxxxxxxxxxxxdouble magnification,

xxxxxxxxxxxxxxxxxxxxxxvoid** buffers)

Note that this function closely approximates the C++ API for read operations: the five double arguments
correspond exactly to an LTIScene object and the buffers argument is a pointer to an array of band

buffers, corresponding to the constructor of an LTISceneBuffer object.

Only “packed BSQ” output is available using the C API.

Metadata Support

The metadata of an image is accessed via two functions. The ltic_getNumMetadataRecords()

function returns the number of metadata records in the image. The ltic_metadataRecord() function

is used to extract the actual data values of a specific record.

As with the ltic_decode() call, the parameters to the ltic_getMetadataRecord() function closely

mimic their C++ SDK counterparts in the LTIMetadataDatabase class.

Streams

An image may be opened either with a filename (const char*) or a stream. The GeoExpress SDK
provides a class derived from LTIOStreamInf, called LTIOCallbackStream, which is designed for

third-party streams and stream-like data structures.

The file lt_ioCStream.h contains a set of C interfaces for constructing an LTIOCallbackStream

object. The lt_ioCallbackStreamCreate() takes as parameters a set of function pointers

corresponding the operations for opening, closing, reading, writing, etc, as is required by the
LTIOCallbackStream class. The functions lt_ioCStreamOpen(), lt_ioCStreamRead() etc., all

invoke the underlying LTIOStreamInf methods for the LTIOCallbackStream object.

Full details and examples may be found in the Reference Manual at

doc/ReferenceManual/index.html.

file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html

55

Command Line Applications

Several simple command line applications are included in this SDK to aid in development and testing.

Switches Common to All Tools

The following switches are common to mrsidinfo, mrsiddecode, mrsidencode, mrsidoptimize and mrsidtile.

-h or -?

Show short usage message

-help

Show detailed usage message

-v or -version

Show version information

-credits

Show credits and copyrights

-quiet

Don't show informational messages. This does not affect the logfile output.

-log STRING

Write output to log file. This does not affect the stdout output.

-progress STRING

Progress meter style: none | default | timer

If the environment variable LT_NITF_IMAGENUM is set to a number, the NITF decode applications

(mrsiddecode, mrsidinfo, mrsidviewer) will attempt to open only the image with the segment number given
by the environment variable. Note that image segments are numbered starting at 1, not zero. The default
is to attempt to open all segments as a mosaic of images.

GeoExpress SDK 7 User Manual

56

mrsidinfo

The mrsidinfo tool displays basic information about an image, such as width, height, etc. Various image
formats are supported.

File Control

-if or -inputFormat STRING

Input image type: tif | ras | jpg | nitf | doq | doq_nc | bbb | lan | bmp |
img | jp2 | sid

-mos or -mosaic

Image format is mosaic (aux file)

Main Switches

-meta or -metadata

Show metadata tags and values

-tile or -tiles

Show tile information (composite MG3 only)

-wf or -worldFile

Generate world file

-dims or -projectDims

Show image dimensions at various resolution levels

-input or -inputFile STRING

Name of input file (required)

-gml or -gmljp2

Show embedded gml information including schemas and custom coordinate reference system
information

Command Line Applications

57

-prof or -genProfile STRING

Generate JP2 profile

-ignorewf or -ignoreWorldFile

Iignore georeferencing from world files

-wkt

Dump the Well Known Text

-aoi

Dump all AOI info

Examples

In the following example, the command displays the basic image information for a MrSID image named
image.sid:

mrsidinfo image.sid

In the following example, the command line displays the basic image information and the metadata for a

TIFF image named foo.tif:

mrsidinfo –meta foo.tif

In the following example, the command line displays metadata information for an AUX file containing
JPEG format images named mosaic.txt:

mrsidinfo –mos –if jpg mosaic.txt

mrsiddecode

The mrsiddecode tool extracts (decodes) all or a portion of a MrSID or JPEG 2000 image to one of
several image formats.

Switches

File Control

-i or -inputFile STRING

Input file (required)

GeoExpress SDK 7 User Manual

58

-o or -outputFile STRING

Output file (required)

-of or -outputFormat STRING

Output image format: tif | tifg | jpg | bip | bil | bsq | bmp

-if or -inputFormat STRING

Input image format

-mos or -mosaic

Image format is mosaic (aux file)

Main Switches

-watermarkFile STRING

Watermark file

-watermarkPosition STRING

Position of watermark: center | center_left | center_right | upper_left |
upper_center | upper_right | lower_left | lower_center | lower_right

(default)

-drmin or -dynRangeMin UNSIGNED-INT

Minimum dynamic range

-drmax or -dynRangeMax UNSIGNED-INT

Maximum dynamic range

-drauto or -autoDynRange

Automatic dynamic range adjustment

-wf or -worldFile

Generate world file

Command Line Applications

59

-sh or -stripHeight UNSIGNED-INT

Strip height

-endian STRING

Endianness (BBB output only): host | little | big

-bsq

Output is BSQ (BBB output only)

-bgc or -backgroundColor STRING

Set background color

-tpc or -transparencyColor STRING

Set transparency color

MrSID Options

-pwd or -password STRING

password to decode image

JPEG 2000 Options

-layers or -qualityLayers UNSIGNED-INT

Number of quality layers (JPEG 2000 only)

Scene Selection

-ulxy FLOAT0 FLOAT1

Upper-left of scene (x,y)

-lrxy FLOAT0 FLOAT1

Lower-right of scene (x,y)

-cxy FLOAT0 FLOAT1

GeoExpress SDK 7 User Manual

60

Center of scene (x,y)

-wh FLOAT0 FLOAT1

Size of scene (width,height)

-s or -scale SIGNED-INT

Scale of scene

-coord or -coordspace STRING

Coordinate space of scene: geo | image

Examples

To decode a MrSID file to a JPG file:

mrsiddecode -i input.sid -o output.jpg

To decode a MrSID file to a GeoTIFF file:

mrsiddecode -i input.sid -o geotiff.tif -of tifg

To decode the upper-left 50x50 pixel scene from a JPEG 2000 image:

mrsiddecode -i input.jp2 -o output.tif -ulxy 0 0 -wh 50 50

To decode an image at scale 2, i.e. one-quarter resolution:

mrsiddecode -i input.jp2 -o output.tif -s 2

Some Definitions

Let us define "input scene" (or just "scene") to be the portion of the MrSID image to be decoded. The
scene may be the whole image or some subset. The scene may extend "outside" of the image proper.

Let us also define "output window" (or just "window") to be the region occupied by the image produced by
the decoder, e.g. the generated TIFF. Note that the output window may not be the same size as the input
scene.

Finally, let us define "coordinate space" to refer to one of two possible ways of specifying regions of the
image:

Command Line Applications

61

 image space: what we normally think of as "pixel" space, at full resolution

 geo space: the image's geographic space

Basic Scene Selection

The command line decoder allows you to specify the input scene explicitly in one of three ways:

 upper-left (x,y) corner of scene, and (width,height) of scene

-ulxy X Y -wh W H

 upper-left (x,y) corner of scene, and lower-right (x,y) corner of scene

-ulxy X Y -lrxy X Y

 center (x,y) of scene, and (width,height) of scene

-cxy X Y -wh W H

For example, consider a 100x100 image. To select the upper-left quarter of the image, the following three
ways are equivalent:

-ulxy 0 0 -wh 50 50

-ulxy 0 0 -lrxy 49 49

-cxy 25 25 -wh 50 50

(The reader is strongly encouraged to work these examples through manually, to ensure full
understanding of the material being presented.)

Note that if no scene is specified, the decoder defaults to the entire image.

Scaled Scene Selection

Consider again the 100x100 image. At scale 1 (half-resolution), this is a 50x50 image. To decode the
same upper-right quarter at half-res -- a 25x25 image -- these three are equivalent (modulo round-off
errors):

-s 1 -ulxy 0 0 -wh 25 25

-s 1 -ulxy 0 0 -lrxy 24 24

-s 1 -cxy 12.5 12.5 -wh 25 25

The first form is straight-forward: it just says make a scale 1 image, starting at the upper-left corner, of
size 25x25. The second form is also clear: make a scale 1 image, starting at the upper-left corner and
extending down to (24,24).

And the third form is really just a variation of the first: make a scale 1 image, centered at (12.5,12.5), of
size 25x25...

Input Scenes and Output Windows

Recall that in the definitions above, we noted the output window may be different than the input scene.
Here's how that can happen.

Consider the following decode on our 100x100 image:

GeoExpress SDK 7 User Manual

62

-s 0 -ulxy 0 0 -wh 125 125.

This is a normal scale 0 decode, but the output window is 125x125 -- considerably larger than our input
scene. The result is an image that really is 125x125, with the right and bottom edges left as black
(technically, the background color).

One could reasonably argue that allowing the user to specify a decode "outside the image" is a bug, but
for an end-user app it's actually a nice feature to have: it lets the user extract out some arbitrarily-sized
region of her image, but turn it into a more well-formed size. The classic example of this feature is a
decode along these lines:

-s 4 –ulxy 0 0 -wh 32 32

which extracts the scaled image into a stock 32x32 icon (we assume here that the scale 4 image is of
some size less than or equal to 32x32, otherwise they'd have to use a smaller scale).

The input scene is always positioned in the upper-left corner of the output window -- unless you are using
the -cxy scene selection mechanism, in which case the input scene is always positioned in the center of

the output window.

Geo Coordinate Spaces

The above examples are all done in the familiar "pixel space", where (0,0) is the upper-left corner and the
lower-right corner is (width-1,height-1) and each pixel is a 1x1 object. We call this "image" space and it is
the default.

For geo images, however, we often prefer to express points on the image and dimensions in terms of geo
coordinates. That is, the upper-left might be (32929.00,28292.25) and the size of the pixel might be
(0.0005,0.0005).

To accomodate this, we allow the above scene selections to be done in "geo" space. If our 100x100
image had an upper-left coordinate of (100.0,50.0) and an (x,y) resolution of (10.0,5.0), we would use the

following to decode the whole image:

-coord geo -ulxy 100 50 -wh 1000 500

That is, the input scene starts at the upper-left position of (100.0,50.0) and the output window is the full
size of the input image (100*10=1000 and 100*5=500).

More Examples

To conclude, the examples within each of the following groups of scene selections using our 100x100
image with UL=(100,50) and res=(10,5) are all equivalent.

Full scene, full res (100x100 image, all picture at full res)

-ulxy 0 0 -wh 100 100 -s 0 -coord image

-ulxy 0 0 -lrxy 99 99 -s 0 -coord image

-cxy 50 50 -wh 100 100 -s 0 -coord image

-ulxy 100 50 -wh 1000 500 -s 0 -coord geo

-ulxy 100 50 -lrxy 1090 -445 -s 0 -coord geo

-cxy 600 -200 -wh 1000 500 -s 0 -coord geo

Command Line Applications

63

Part scene, full res (50x50 image, UL quarter of image at full res)

-ulxy 0 0 -wh 50 50 -s 0 -coord image

-ulxy 0 0 -lrxy 49 49 -s 0 -coord image

-cxy 25 25 -wh 50 50 -s 0 -coord image

-ulxy 100 50 -wh 500 250 -s 0 -coord geo

-ulxy 100 50 -lrxy 590 -195 -s 0 -coord geo

-cxy 350 -75 -wh 500 250 -s 0 -coord geo

Full scene, half-res (whole image at half res, in UL quadrant of 100x100 image)

-ulxy 0 0 -wh 100 100 -s 1 -coord image

-ulxy 0 0 -lrxy 99 99 -s 1 -coord image

-ulxy 100 50 -wh 1000 500 -s 1 -coord geo

-ulxy 100 50 -lrxy 1090 -445 -s 1 -coord geo

Full scene, half-res (centered) (whole image at half res, in center quadrant of 100x100 image)

-cxy 50 50 -wh 100 100 -s 1 -coord image

Full scene, half-res (centered) (whole image at half res, in center of a 50x50 image)

-cxy 600 -200 -wh 1000 500 -s 1 -coord geo

mrsidviewer

The mrsidviewer application is a very simple Windows application for viewing images in all of the formats
supported by the SDK, including MrSID and JPEG 2000.

NOTE: The mrsidviewer application is available on Windows SDKs only.

Operations

 zoom in: left-click

 zoom out: shift + left-click

 pan: right-click and drag

The viewer may be invoked from the command line:

C:\>mrsidviewer image.sid

Normal drag and drop operations are also supported.

The (classical) metadata for the image can be displayed via the Options | Metadata menu item.

65

Appendix A - Technical Notes

This chapter contains several articles providing background information on specific issues and questions
frequently asked by some SDK developers. Please check LizardTech’s Developer website
(http://developer.lizardtech.com) for additional and updated technical notes.

Porting Guide

In version 7 of the GeoExpress SDK, we have introduced a few changes to the interface style in order to
facilitate use of image pipelines in more complex, dynamic workflows.

Constructors and Initializers

The LTIImageStage initializer now takes arguments, whereas before the arguments were passed in

through the constructor. LTIImageStage::initalize() is not virtual anymore.

LTIImageFilter no longer has a takeOwnership flag because LTIImageStage objects are now

reference counted, as described below.

Reference Counting

LTIImageStage objects are now reference counted.

 Use ClassName::create() to create a new object of type ClassName.

 Use object->retain() when you want to keep an object around (but not if you created it)

 Use object->release() when you are done using the object.

As a rule of thumb, if you create or retain an object then you must issue a corresponding release for it.

ClassName::create() and LTIImageStageManager::createImageStage() are the two must

common ways to create an LTIImageStage object. When you pass a reader to a filter, the filter calls

retain() on the reader which “keeps the object alive”. Before the pointer to the reader goes out of

scope or is reassigned you must call release() as shown in the following example:

LTIImageStage *pipeline = NULL;

{

MrSIDImageReader *reader = MrSIDImageReader::create();

sts = reader->initialize(filename);

pipeline = reader;

}

{

MyImageFilter *filter = MyImageFilter::create();

// ‘pipeline’ will be retained by ‘filter’

sts = filter->initialize(pipeline);

// release ‘pipeline’ because we are reusing the variable

pipeline->release();

pipeline = filter;

}

http://developer.lizardtech.com/

GeoExpress SDK 7 User Manual

66

...

... do something with the pipeline

...

// done with the pipeline: releasing ‘pipeline’ will release the

// filter, which will in turn release the reader

pipeline ->release();

pipeline = NULL;

The Metadata Database

The LTIMetadataDatabase object does not store a copy of the image properties any more. Prior to

version 7, the metadata database maintained a copy of the image properties such as width, height, and
geo location. These tags were removed because there are cleaner ways of getting at the data, such as

LTIImageStage::getWidth(), getHeight(), and getGeoCoord().

This also means you should use LTIImageStage::getGeoCoord().getWKT() to get the SRS

information, instead of querying any metadata tags. Additionally, to make sure the WKT information is
generated correctly from the metadata tags you must setup GDAL – specifically, GDAL must have the
GDAL_DATA environment variable set.

However, note that the GeoTIFF, DOQ and IMG tags are still stored in the metadata.

Example of Changing Old Code to New Code

Old code:

{

MrSIDImageReader reader(filename);

sts = reader.initialize();

...

... Set up LTISceneBuffer and LTIScene

...

sts = reader.read(buffer, scene);

...

... Use decoded pixels

...

}

 New Code:

{

 // allocates new object on the heap

MrSIDImageReader *reader = MrSIDImageReader::create();

sts = reader->initialize(filename);

...

... Set up LTISceneBuffer and LTIScene

...

sts = reader->read(buffer, scene);

Appendix A - Technical Notes

67

// deletes the object if this is the last reference to it

 reader->release();

reader = NULL;

...

... Use decoded pixels

...

}

MG3 Memory Usage

Memory Usage for Lossless Encoding

The memory usage for a lossless encode operation is roughly given by the sum

MainMem + TempMem

where

MainMem = (8 + 4 * SubblockSize + StripHeight) * NumBands * Width * 4

TempMem = 0.005 * (ExpectedOutputFileSize)

and

SubblockSize is set by user (see below)

StripHeight is set by user (see below)

NumBands is the number of bands in the image to be encoded

Width is the width (in pixels) of the image to be encoded

Height is the height (in pixels) of the image to be encoded

WordSize is the number of bytes per sample of the image to be encoded (1 or 2)

We can make some important observations from these formulas. First, the TempMem term has a

coefficient of 0.5% and is therefore small enough to be typically ignored. Second, the remaining MainMem

term is dependent only on the width of the image, i.e. the height does not matter. (One might choose to
think of the image width as defining the "space" required for the encode computation and the image
height as defining the "time" required.)

The memory usage is constant over the length of the encode operation.

Subblock Size and Strip Height

The subblock size parameter controls how large the bitplane-encoded regions are. Lowering this
parameter may lower the memory usage of the encoder but may also decrease the lossless compress
ratio somewhat. Raising this parameter may increase memory usage, but may improve the lossless

GeoExpress SDK 7 User Manual

68

compression ratio. This parameter has little effect on overall encode time. The default value is 64;
typically values range from 32 to 256.

The strip height parameter controls how many rows of the input image are processed at one time.
Lowering this parameter may reduce memory usage, but may increase the encoding time. Raising this
parameter may increase memory usage, but may also decrease encoding time. Unlike the subblock size,
changing parameter will not have any effect on the lossless compression ratio of the output image. The
default value is 12; typical values range from 2 to 128. Note that this value must be an even number.

Additionally, the encoder may perform better if the subblock size is a multiple of the strip height.

Given the above default values and given that the memory usage formula contains the sum

4 * SubblockSize + StripHeight

it is usually more useful to adjust SubblockSize than StripHeight when tuning your memory usage.

However, lowering SubblockSize may affect image quality, so care must be taken. Perhaps more

importantly, reducing the SubblockSize by a factor four, e.g. from 64 to 16, will increase the number of

subblocks in the image by a factor of sixteen: this may result in substantially degraded decode
performance.

Example

Assume an image which is 3000 pixels wide by 4000 pixels high, using 8-bit RGB pixels (24-bit color).
Assume the strip height is set to 12 and the subblock size is 64. Then,

MainMem = (8 + 4 * 64 + 12) * 3 * 3000 * 4

= 276 * 3 * 3000 * 4

= 9936000

~ 9.9 MB

TempMem = 0.005 * (3000 * 4000 * 3 * 1)

= 0.005 * 36000000

= 180,000

~ 0.2 MB

The encode process should consume about 10MB of memory.

Hints on Tuning Your Encoder

If you have a large image to encode, how should you determine what your strip height and subblock size
should be? Follow these steps:

 First, determine how much physical memory (RAM) your computer has. Typically this will be
anywhere from 128MB up to 2GB.

 Next, start your encode job with the default settings for subblock size and strip height. (Do not run
any other jobs in the background.)

 Open the Windows Task Manager, click the Performance tab, and observe the CPU usage meter.
If you are consistently running at between about 85 and 100%, your encode job is at peak
efficiency; tuning parameters will not help you.

 If you are not at peak CPU speed, observe the Physical Memory box at the bottom of the
Performance page. The “Total” value should be approximately equal to the amount of RAM you
have. (Note that Total is given in K, not MB.) The “Available” value should have plenty of
headroom – if it is regularly below 10MB (or 10000K), then the operating system has run out of

Appendix A - Technical Notes

69

physical memory and is using virtual memory instead. This means that active data is being paged
out to disk, and your encoder is suffering greatly.

 If you are paging, you can try tuning the encoder parameters. Drop your subblock size down to 32,
restart your encode job, and observe the memory utilization again. If you are still paging, consider
dropping it down to 24. Going down to 16 might begin to affect image quality for certain images.
You can reduce the strip height to 8, 4, or 2 and see if that has any additional impact as well.
Ideally you should keep the subblock size at 32 or greater and lower the strip height as much as
possible without affecting CPU performance.

Additional hints:

 If you are reading or writing data across a network, the encoder will probably not be able to run at
full CPU speed regardless of your settings. Whenever possible, use local storage.

 SCSI disk drives will usually give significantly better performance (5-20%) compared to IDE drives.

 Memory is relatively cheap. Buying more memory is rarely a bad idea.

 Experienced users can study the performance of the encode process in detail via the Process tab
of the Task Manager. Watch for lower CPU utilization, high paging rates, and large virtual memory
usage.

 What kind of an input image are you using? Compressed images, for example JPEG or LZW
TIFFs, require additional computation time beyond what the encoder requires for a more “raw”
formatted image.

Memory Usage for Encoding, Compressing, and Optimizing

We have 6 modes of operation:

 E0 encode & pass-through optimizer ("vanilla lossless encode")

 E1 encode & one-pass optimizer

 E2 encode & two-pass ("filter") optimizer

 R0 read MG3 and invoke pass-through optimizer ("no compression")

 R1 one-pass optimizer

 R2 two-pass ("filter") optimizer

Heuristic Analysis

For encoding with compression:

if the input file size is less than main memory size, then

use E1

else

if you have enough disk space to store a losslessly compressed image, then

use the preferred method:

1. do a lossless encode (E0)
2. then invoke repurposer (R2)

else use the last resort:

GeoExpress SDK 7 User Manual

70

use E2. Note: this will require a significant amount of time because it runs the

encoder twice

endif

endif

For compressing an MG3 file with the repurposer:

if the MG3 file size is less than 1/2 main memory size, then

use R1 [because R1 will run faster than R2 on small images]

else

use R2

endif

Formal Analysis

Let us assume the following variables:

Fx size of lossless mg3 file

Fr size of input mg3 file (for repurposing)

Mx memory needed to do normal lossless encode

Tx "CPU time" to do normal lossless encode

Q1 O(Npc*Nc*log_2 Nc)

Q2 O(Nc*npc)

Where,

Nc = total number of components in image,

Npc = number planes per component

Ie time to read in the original file (for encoding)

Ir time to read in the input MG3 file (for repurposing) Oc time to write out the compressed file

Then:

E0 cpu time Tx

memory Mx

io time Ie + Oc

E1 cpu time Tx + Q1

Appendix A - Technical Notes

71

memory Mx+Fx+20*Nc

io Ie + Oc

E2 cpu time 2Tx + Q2

memory Mx

io 2Ie + Oc

R0 cpu time (zero)

memory (zero)

io Ir + Oc

R1 cpu time Q1

memory Fr + 20*Nc

io Ir+ Oc

R2 cpu time Q2

memory constant

io 2Ir + Oc

Notes

E1 stores the whole lossless encoded image in memory.

E2 requires two encoding passes, very big time cost but very little memory overhead.

Q1 and Q2 are very small with respect to encoding time and I/O.

Zoom Levels

The following describes the GeoExpress SDK’s handling of zoom levels for MG2, MG3, and JP2. In the
code below, assume the following:

W = image width (constant)

H = image height (constant)

n = number of levels

MG2 Behavior

The default number of zoom levels is computed by initially assuming the maximum possible number of
levels. The size of the image that would be needed to support that number of levels is then computed. If
the actual image is larger than the computed size, the number is determined and the SDK inquires no

GeoExpress SDK 7 User Manual

72

further. Otherwise, the SDK recomputes the image size with a reduced number of levels, and continues to
do so until the actual image size is equal to or greater than the required size.

n = 9

loop

{

min_length = (IPOW(2, n+1) - 2) * 4 + 1

if (W > min_length) and (H > min_length) break;

--n

}

The min_length values for n=9, 8, …, 3 are 4089, 2041, …, 57.

The maximum number of levels for the image is computed the same way.

These zoom level calculations are in the MG2WriterParams class. However, if you request less than 3

levels (or more than 9), the SDK will clamp your request to 3 (or 9). These are hard limits for MG2.

MG3 Behavior

MG3 uses different equations than MG2 and does not have the hard limits of 3 and 9 levels.

The default number of zoom levels is determined by initially assuming zero levels, then reducing the
minimum image dimension by a factor of two until it falls below 32.

n = 0

minWH = MIN(W,H)

while (minWH >= 32)

{

minWH = minWH / 2

++n

}

The maximum number of zoom levels is computed by a different method: the number of levels is
increased as long as the dimension at that number of levels is not greater than the minimum actual image
dimension.

n = 1

minWH = MIN(W,H)

while (minWH > (1 << (n+1))

{

++n

}

--n

These zoom level calculations are in the MG3WriterParams class.

JP2 Behavior

JP2 behaves identically to MG3. These zoom level calculations are in the JP2WriterParams class.

Appendix A - Technical Notes

73

Example

Consider a 512x512 image. Using the SDK encoder and info tools, the following results are obtained:

mg2: image is encoded to 6 levels

0: 512x512

1: 256x256

..

5: 16x16

6: 8x8

mg3: image is encoded to 5 levels

0: 512x512

1: 256x256

..

5: 16x16

jp2: image is encoded to 5 levels

0: 512x512

1: 256x256

..

5: 16x16

Coding Conventions

The developers of the GeoExpress SDK follow a general set of coding conventions and guidelines. While
we certainly don't expect third-party developers to adhere to these conventions, they are described here
as an aid to understanding and working with the SDK, both at the syntactic and semantic level.

Note that these are only conventions, not hard rules; the SDK does not follow all of these guidelines all
the time, for reasons of practicality, historical practice, compatibility, etc. Where important for developers,

such deviations are noted in the Reference Manual at doc/ReferenceManual/index.html.

Syntactic Conventions

Line length

Lines should be no longer than 78 columns in order to avoid line- and wordwrapping.

Tabbing

file:///E:\Bob\Flare\f5cefd98e\ReferenceManual\index.html

GeoExpress SDK 7 User Manual

74

Tabs are implemented as 3 spaces.

Namespaces

Header files should surround declarations with LT_BEGIN_NAMESPACE(LizardTech) and

LT_END_NAMESPACE(LizardTech), and source files should declare

LT_USE_NAMESPACE(LizardTech) at the top.

Warning levels

Source files should be compiled with high warning levels on Win32 compilers:

#if defined(LT_COMPILER_MS)

#pragma warning(push,4)

#endif

...

#if defined(LT_COMPILER_MS)

#pragma warning(ppop)

#endif

Variable names, type names, etc

 variables are spelled using camelcase: upperLeftPos

 function names are also spelled using camelcase: getUpperLeft()

 class member variables use an "m_" prefix: m_xPosition

 static variables (whether class members or not) use an "s_" prefix: s_twoPi

 enum and type names are capitalized: LTIImageStage, LTIDataType

 however, the integral primitive types are an exception: lt_uint8

 enum values are uppercase and generally are named to reflect their datatype:
LTI_DATATYPE_UINT8

 macros are uppercase: LT_USE_NAMESPACE

Integral primitives

The use of the typedef'd primitive datatypes, e.g. lt_uint8, is preferred when possible and

practical.

File names

For the "LT" and "LTI" classes, the source filenames are spelled with leading prefixes – for
example, class LTIGeoCoord is defined in header lti_geoCoord.h. For all other classes, the

filename matches the class name – for example, class MG3ImageWriter and header

MG3ImageWriter.h.

Semantic Conventions

Initialization

As a precaution, all variables should be initialized at the point of declaration. A value of 0 or -1,

INVALID (available for most enums), or LT_STS_Uninit (for status codes) is usually appropriate.

Status codes

Appendix A - Technical Notes

75

The public SDK does not use exceptions, and the internal implementation uses them only
sparingly. In general, functions should return status codes rather than relying on throw. While

putting an additional burden on the user, our experience has shown that status codes are both
more portable and less prone to error than the alternatives. If a function returns a status code,
always check it. The standard idiom for checking status codes is:

LT_STATUS

Class::foo()

{

...

LT_STATUS sts = bar();

 if (!LT_SUCCESS(sts)) return sts;

...

 return LT_STS_Success;

}

When writing a new function, consider returning an LT_STATUS status code hardwired to

LT_STS_Success instead of just returning void. If future development of the function requires

the ability to return failure codes, downstream uses will not have to be changed.

Constructors

"Heavy" objects which require nontrivial work in their constructors should use an initialize()

function. This requires extra code for the user, but provides a means for returning status codes
back to the user without relying on exceptions. In particular, objects should not (explicitly or
implicitly) call new or any other nontrivial function from within their constructors.

The "creator-deletes" rule

The object that creates a new object is considered to be the "owner" of that new object and as
such has responsibility for deleting it. Passing the allocated object by address to a function doesn't
pass ownership to that function (unless documented otherwise).

Reference counting

The SDK uses reference counting to manage the lifespan of objects that comprise image pipelines.
This is similar in spirit to “smart” or “auto” pointers. The static member function create() of a

class should be used to create a new instance of that class. Similarly, the (non-static) member
function release() should be used when you are done with object – for example, when the

pointer to the object goes out of scope. The retain()function should be used to hold onto an

object, i.e. increment the reference count; if you created the object, however, do not call
retain(). When the last reference calls release(), the object will delete itself. The two most

common reference counted classes are LTImageStage and LTIImageStageManager.

Overrides

The SDK uses a system of “mixins” to simplify the overriding of LTIImageStage properties.

Specifically, LTIImageStage defines an abstract interface that needs to be implemented by

derived class of LTIImageFilter; LTIImageFilter implements the LTIImageStage

interface by forwarding the method call to the next LTIImageStage in the pipeline. Derived

classes of LTIImageFilter that change image properties will need to override the accessor

functions.

Pass-by-reference

GeoExpress SDK 7 User Manual

76

Data should be passed by reference whenever possible, for example LTIImageStage& rather

than LTIImageStage*. Pass-by-address is preferred when reassigning ownership or when NULL

is being used for some sentinel value.

Const

Use const whenever possible. In function declarations, it is used to indicate "in/out" semantics for

parameters (excluding by-value parameters). In variable declarations, it is used to clarify intent of
the variable's usage.

Disabled standard class member functions

Unless they are required by the class, it is preferable to explicitly disable the assignment operator,
copy constructor, and default constructor.

private:

 LTINavigator();

 LTINavigator(LTINavigator&);

 LTINavigator& operator=(const LTINavigator&);

One class per header file

A header file should contain the declaration of only one class. Implementations should not be in
the header file unless truly warranted.

Inlining

Implementations should not be defined inline in the header file unless truly warranted. Do not use
compiler-specific inlining pragmas.

Templates

Use templates sparingly and only when truly warranted, as they lead to code bloat and/or
incompatibilities among various compilers. Consider using a templated function private to a source
module instead of making a public templated class. If you must use templates, avoid the more
complex parts of the language.

Template headers

A header file containing only a templated class should have a corresponding source file which
includes it, even though the source file contains no implementation code.

Global data

The SDK contains no global variables. No non-const module statics or singleton classes are used.

Threadsafety

The SDK may be safely used in multithreaded applications. Locking of SDK objects is NOT
provided, however; the application must guarantee each object is accessed serially within a
particular thread context.

Appendix A - Technical Notes

77

Assertions

Assertion macros, specifically LT_ASSERT(), should be used liberally.

Delegates

Where appropriate, for "callback" or "handler" mechanisms the use of simple abstract classes
("delegates") is preferred to using a function pointer typedef.

Set/get

Use set()/get() style member variable access instead of making data members public.

Other Conventions

STL

Do not use STL in public interfaces, as this may cause linkage problems. While the SDK uses STL
internally in some areas, its use is in general discouraged.

Optimization

Do not write "hand-optimized" code. Write first for correctness and maintainability; optimize it later
only if profiling justifies it.

Overrides

The SDK uses a system of “mixins” to simplify the overriding of LTIImageStage properties. Specifically,

LTIImageStage defines an abstract interface that needs to be implemented by derived class of

LTIImageFilter; LTIImageFilter implements the LTIImageStage interface by forwarding the

method call to the next LTIImageStage in the pipeline. Derived classes of LTIImageFilter that

change image properties will need to override the accessor functions.

A cropping filter would change the width and height of the image at that stage in the pipeline, and so

would need to override getWidth() and getHeight().

For example:

#include "lti_imageFilter.h"

#include "lti_imageStageOverrides.h"

class MyCropFilter : public LTIOverrideDimensions< LTIImageFilter >

{

...

LT_STATUS initialize(... lt_uint32 newWidth, lt_uint32 newHeight,

...)

{

...

sts = setDimensions(newWidth, newHeight);

...

}

...

};

GeoExpress SDK 7 User Manual

78

LTIOverrideDimensions<> adds getWidth() and getHeight(), a protected setDimensions()

function, and the needed data members.

The SDK uses templates to implement the mixins over virtual inheritance. To override many sets of
properties you use the following code:

class MyFilter : public LTIOverrideXXX < LTIOverrideYYY < LTIOverideZZZ

< LTIImageFilter > > >

{ ... };

The list of override mixin templates and the LTIImageStage functions they override is as follows:

 LTIOverrideMetadata

o getMetadata()

 LTIOverrideDimensions

o getWidth(), getHeight()

 LTIOverridePixelProps

o getPixelProps()

o getMinDynamicRange()

o getMaxDynamicRange()

 LTIOverrideNoDataPixels

o getNoDataPixel()

o getBackgroundPixel()

 LTIOverrideGeoCoord

o getGeoCoord()

o isGeoCoordImplicit()

 LTIOverrideMagnification

o getMinMagnification()

o getMaxMagnification()

 LTIOverrideIsSelectiveData

o isSelective()

 LTIOverrideStripHeight

o getStripHeight()

o setStripHeight()

 LTIOverrideDelegates

o setProgressDelegate()

o getProgressDelegate()

o setInterruptDelegate()

o getInterruptDelegate()

 LTIOverridePixelLookupTables:

o getPixelLookupTable()

Notes on Streams

The LTIOStreamInf class, and streams derived from it, provide an abstraction for performing I/O in a

variety of ways, including "large file" I/O, buffered I/O, memory-based I/O, etc. As it is a well-known
model, the semantics of the stream operations are very similar to those of the Unix stdio operations.

This technical note provides some technical details on the LTIOStreamInf operations.

Appendix A - Technical Notes

79

Offsets

The term "offset n" refers to byte (n+1) in the file; that is, offset 0 is the first byte and offset 10 is the
eleventh byte. When a stream is "positioned at offset n", we mean than the next byte read in will be byte
(n+1).

Initialization

Each derived class has constructor which has no parameters and an initialize() function which zero
or more parameters which will vary according to each derived class. (Note: this initialization process is
different from that of most of the other SDK functions, which put all constructor parameters in the
constructor and not the initialization function.)

The initialize() function must be called prior to any other member functions.

open()

 open() must be called before any other stream functions can be called (excluding

initialize() and close())

 beyond that, the semantics of open() are undefined; typically, it will allocate resources on behalf

of the stream, e.g. a FILE handle, and/or make them available to the user

 after open(), the stream will be positioned at offset 0 and the EOF flag will be false

 calling open() on an already opened file will return an error

close()

 close() will deallocate the resources, but in such a way that a subsequent call to open() will

restore them for use

 calling close() on a closed stream will have no effect (and is not an error)

 strictly speaking, close() need not be called as the destructor is expected to call close();

relying on this is considered bad form, however

 a closed stream must be opened again before any other functions may be called

read(lt_uint8 *buffer, lt_uint32 len)

 read() will return the number of bytes successfully read; only that many bytes are valid within the

read buffer

 if the number of bytes read is not equal to the number of bytes asked for, then exactly one of the
following is true:

 EOF was encountered

o the stream uses "socket semantics", and one or more additional reads will be required to
get the remaining desired bytes

o an error occurred

 the getLastError() function is used to determine the precise error condition, if the number of

bytes read is not equal to the number of bytes requested

 the position of the stream after the read is equal to the position of the stream prior to the read plus
the number of bytes successfully read

 if EOF is true when the read is requested, read will return 0 bytes read and keep EOF set to true

write(const lt_uint8 *buffer, lt_uint32 len)

 write() will return the number of bytes successfully written

GeoExpress SDK 7 User Manual

80

 if the number of bytes written is not equal to the number of bytes requested, then exactly one of
the following is true:

o the stream uses "socket semantics", and one or more additional writes will be required to
output the remaining bytes

o an error occurred

 the getLastError() function is used to determine the precise error condition, if bytes read !=

bytes given

 the position of the stream after the write is equal to the position of the stream prior to the write plus
the number of bytes successfully written

 a call to write() will always clear the EOF flag; write() never sets the EOF flag

tell()

 tell() returns the current offset as a 64-bit value

seek()

 seek() positions the stream to the given offset using a 64-bit value

 the EOF flag is reset

EOF

 when an attempt is made to read past the last byte of the file, the EOF flag becomes true

 in particular, note that merely reading the last byte will not set EOF to true

 for example, consider a file of 4 bytes, with the stream positioned at offset 0:
o a read request of 4 bytes will return 4 bytes read, position is offset 4, EOF is not set

o a read request of 6 bytes will return 4 bytes read, position is offset 4, EOF is set

 a write operation has no effect on the EOF flag

 a seek operation always clears the EOF flag

duplicate()

 duplicate() creates a new stream of the same type as the original stream and calls

initialize() on it with same parameters as original stream

 isOpen() should initially return false; it is up to the caller to call open() on the newly created

stream

getLastError()

 The getLastError() function is used to get the status code when one of the following I/O

functions failed:
o read()

o write()

o tell()

o duplicate()

 The getLastError() function is required because, like the other I/O functions, these functions

do not return status codes.

 The value returned by getLastError() is undefined unless called immediately after a failed call

to one of the above functions. A call to any other I/O function will invalidate the state of
getLastError().

 The minimal implementation of this function is to return LT_STS_Failure.

Appendix A - Technical Notes

81

Modes

Any "modes" that a stream supports ("w", "wb", "r+", etc) are defined by the derived class; there is no

notion of mode at the base class level.

For example, it is entirely possible one would want to make a "read-only file stream" class. Such a class

would be implemented with the write() function always returning 0 bytes read.

Notes on World Files

A "world file" is a simple text file containing auxilliary georeferencing information for an image. It can be
used to georeference an image that has no georeferencing information within it, or to override existing
georeferencing information.

By convention, the filename for a world file is the same as the image it pertains to, with a different
extension. The three-letter extension is made up of the first and last characters of the image filename
extension, followed by a 'w'. For example, the world file for a TIFF image named bainbridge.tif

would be bainbridge.tfw; the world file for a MrSID image named madison.sid would be named

madison.sdw.

The LTIGeoCoord class stores the same information as a world file. It has member functions for reading

and writing world files. Many of the image reader and writer classes support the use of world file
georeferencing information.

Format

The world file format is six lines, each line containing a double precision value (represented in text). No
additional lines may be present. Leading and trailing whitespace are allowed. The meanings of the six
values are:

 dimension of a pixel in map units in x direction

 first rotation term

 second rotation term

 dimension of a pixel in map units in y direction

 x-coordinate of the center of the upper-left pixel

 y-coordinate of the center of the upper-left pixel

The y-dimension is, by convention, a negative value.

The GeoExpress SDK currently ignores the rotation term in most cases.

Because the floating point values are represented textually, when using world files be wary of errors due
to roundoff, imprecise scanf/printf conversion, etc.

Example

This is an example of a world file:

xx0.20000000

xx0.00000000

GeoExpress SDK 7 User Manual

82

xx0.00000000

x-0.20000000

780.10000000

219.90000000

This world file indicates the image resolution is (0.2, -0.2) and the upper left is at (780.1, 219.9). The
rotation terms are zero, meaning no rotation is required.

Notes on BBB Files

A BBB image consists of two files, a binary file containing only the raw sample values of the image and a
text file describing the image properties. The raw data may be organized in one of three layouts: "band-
interleaved by pixel" (BIP), "band-interleaved by line" (BIL), and "band sequential" (BIL). The three
formats are collectively referred to as the BBB file format.

Because BBB files only contain raw data with an easily editable header format, they are often used as a
"least common denominator" interchange format. However, there is no set standard for the keywords that
may be contained in the header. This document describes the header format that the GeoExpress SDK

supports, via the LTIBBBImageReader and LTIBBBImageWriter classes.

Filenames

The LTIBBBImageReader class supports four filename extensions: .bip, .bil, .bsq, and .bbb. The

first three imply the layout is BIP, BIL, or BIP respectively; the .bbb extension implies the default layout,

which is BIP.

The header file for a BBB image has the same name as the image, but with a .hdr extension.

Header Syntax

The header file is a simple text file containing keywords and their associated value, one keyword/value(s)
set per line.

All keywords and values are case-insensitive.

Blank lines are ignored. Leading and trailing whitespace is ignored.

A line that begins with a '#' character, possibly preceded by whitespace, indicates a comment line.
Comment lines are ignored.

Supported Keywords (Reader)

The keywords and their allowed values, as supported by the LTIBBBImageReader, are as follows:

BANDGAPBYTES

Not currently supported – value is ignored

BANDROWBYTES

Not currently supported – value is ignored)

Appendix A - Technical Notes

83

BANDS

Same as NBANDS

BYTE_ORDER

Endianness interpretation of data

Allowed values:

 MOTOROLA, M, BIG, BIGENDIAN

 INTEL, I, LITTLE, LITTLEENDIAN

 NA

Default: host endianness

The value NA (not applicable) may only be used if the number of bands is 1

BYTEORDER

Same as BYTE_ORDER

COLORSPACE

The colorspace of the image

Allowed values:

 GREY, GRAY, GREYSCALE, GRAYSCALE

 RGB

 CMYK

 MULTISPECTRAL

Default: GRAY for 1-banded images, RGB for 3-banded images, otherwise MULTISPECTRAL

COLS

Same as NCOLS

DATATYPE

The data type of the samples

Allowed values: U8, U16, F32

Default: U8

DYNAMICRANGELEVEL

The midpoint of the range of the data

Allowed values: a single floating-point value (applies to all bands)

GeoExpress SDK 7 User Manual

84

Default: (none – value is determined by LTIImage)

DYNAMICRANGEMAX

The maximum dynamic range

Allowed values: a single floating-point value (applies to all bands)

Default: (none – value is determined by LTIImage)

DYNAMICRANGEMIN

The minimum dynamic range

Allowed values: a single floating-point value (applies to all bands)

Default: (none – value is determined by LTIImage)

DYNAMICRANGEWINDOW

The size of the range of the data

Allowed values: a single floating-point value (applies to all bands)

Default: (none – value is determined by LTIImage)

E_SQUARED

Sphere eccentricity squared, for georeferencing

Allowed values: (floating-point)

Default: (none)

INTERLEAVING

Same as LAYOUT

LAYOUT

The data layout; use of this keyword overrides the layout implied by the filename extension

Allowed values: BIP, BIL, BSQ, or NA

Default: BIP

The value NA (not applicable) may only be used if the number of bands is 1

MAP_UNITS

Measurement unit for georeferencing

Appendix A - Technical Notes

85

Allowed values: (string)

Default: (none)

NBANDS

The number of bands in the image

Allowed values: 1-65535

Default: (none – this keyword is required)

NBITS

Number of bits used per sample

Allowed values: 1 to (total number of bits per sample)

Default: the total number of bits per sample

NCOLS

Width of image, in pixels

Allowed values: 1 to 2^31

Default: (none – this keyword is required)

NROWS

Height of image, in pixels

Allowed values: 1 to 2^31

Default: (none – this keyword is required)

PIXEL_HEIGHT

Same as YDIM

PIXEL_WIDTH

Same as XDIM

PROJECTION_NAME

Name of projection system, for georeferencing

Allowed values: (string)

Default: (none)

GeoExpress SDK 7 User Manual

86

PROJECTION_PARAMETERS

Numeric projection parameters, for georeferencing

Allowed values: (1 to 15 floating point values)

Default: (none)

PROJECTION_ZONE

Projection zone number, for georeferencing

Allowed values: (int32)

Default: (none)

RADIUS

Sphere radius, for georeferencing

Allowed values: (floating point)

Default: (none)

ROWS

Same as NROWS

SEMI_MAJOR_AXIS

Semimajor axis, for georeferencing

Allowed values: (floating point)

Default: (none)

SEMI_MINOR_AXIS

Semiminor axis, for georeferencing

Allowed values: (floating point)

Default: (none)

SKIPBYTES

Number of bytes at top of image file to skip

Allowed values: 0 to (image size in bytes)

Default: 0

This can be used for raw formats which contain a fixed number of "header" bytes at the top of the
data file

Appendix A - Technical Notes

87

SPHEROID_NAME

Name of projection system, for georeferencing

Allowed values: (string)

Default: (none)

TOTALROWBYTES

Not currently supported – value is ignored

UL_X_COORDINATE

Same as ULXMAP

UL_Y_COORDINATE

Same as ULYMAP

ULXMAP

Upperleft x-position, for georeferencing

Allowed values: (any floating point value)

Default: (none – value is determined by LTIImage)

ULYMAP

Upperleft y-position, for georeferencing

Allowed values: (any floating point value)

Default: (none – value is determined by LTIImage)

WORDLENGTH

Number of bytes per sample

Allowed values: 1 or 2

Default: 1, unless overridden by DATATYPE

XDIM

Size of pixel in x-direction, for georeferencing

Allowed values: (any floating point value)

Default: (none – value is determined by LTIImage)

GeoExpress SDK 7 User Manual

88

YDIM

Size of pixel in y-direction, for georeferencing

Allowed values: (any floating point value)

Default: (none – value is determined by LTIImage)

This is expected to be a positive value

Additional Notes

 These keywords are required: NBANDS, NCOLS, NROWS. All other keywords have default values.

 If dynamic range is used, either both DYNAMICRANGEMIN and DYNAMICRANGEMAX must be set or

both DYNAMICRANGEWINDOW and DYNAMICRANGELEVEL must be set.

Supported Keywords (Writer)

The LTIBBBImageWriter class only writes a subset of the above keywords to the header file. The

keywords used are:

BYTEORDER

Determined by constructor

COLORSPACELAYOUT

Only set if image colorspace is

CMYK

Set to BIP, BIL, or BSQ as per constructor argument

NROWS

Height of scene being written

NCOLS

Width of scene being written

NBANDS

Number of bands in image

NBITS

Bits of precision of image samples

Appendix A - Technical Notes

89

ULXMAP

Determined by scene/image

ULYMAP

Determined by scene/image

XDIM

Determined by scene/image

YDIM

Determined by scene/image

Example

This BBB header files describes a 640x480 color image, using 16 bits per sample.

NROWS 480

NCOLS 640

NBANDS 3

DATATYPE U16

Extensions

Note that some of the header syntax supported by the MrSID SDK may not be supported by other
vendors' BIP/BIL/BSQ implementations. In particular, the following features and keywords may be
somewhat specific to LizardTech:

 interpretation of .bbb extension as meaning layout of BIP

 support for comment lines

 the COLORSPACE keyword

 the DYNAMICRANGEMIN, DYNAMICRANGEMAX, DYNAMICRANGEWINDOW, and

DYNAMICRANGELEVEL keywords

GeoTIFF Metadata for JPEG 2000

Following is a copy of the first draft of The "GeoTIFF Box" Specification for JPEG 2000 Metadata.

GeoExpress SDK 7 User Manual

90

*** DRAFT ***

The "GeoTIFF Box" Specification for JPEG 2000 Metadata

Version 0.0

30 April 2004

*** DRAFT ***

Michael P. Gerlek, editor

mpg(AT)lizardtech(DOT)com

LizardTech, Inc.

1008 Western Ave Suite 200

Seattle, WA 98104 USA

0 Editorial Notes

This is a DRAFT document. Comments welcome.

Sections in [brackets] are editorial asides, calling out specific questions or details to be resolved.

0.1 Disclaimers and Copyrights

This document is copyright LizardTech, Inc, 2004. Permission to copy without fee all or part of this
material is granted provided that the copies are not made or distributed for direct or commercial
advantage and this copyright notice appears.

LizardTech, Inc assumes no liability for any special, incidental, indirect or consequences of any kind, or
any damages whatsoever resulting from loss of use, data or profits, whether or not advised of the
possibility of damage, and on any theory of liability, arising out of or in connection with the use of this
specification.

1.0 Introduction

This specification describes a GeoTIFF-based method for adding geospatial metadata to a JPEG 2000
file. While the actual specification is not at all complex or hard to implement, there has been some
confusion about what it actually is, what restrictions apply to its use, etc. Enough people have asked
about it that we considered it worthwhile to put something on paper and have it reviewed by some
independent developers.

Appendix A - Technical Notes

91

Note the intent of this document is only to codify existing practice as of this writing; no modifications or
extensions to this specification are planned or expected.

1.1 History, Background

Mapping Science Inc. (MSI) provided the first implementation of this specification in their GeoJP2(tm)
encoder product in 2003. At that time, the definition of the specification was available only under certain
licensing restrictions from MSI.

LizardTech, Inc. acquired the assets of Mapping Science in 2004. It is LizardTech's position that this
specification should be publicly available for anyone to implement. Neither JPEG 2000 nor GeoTIFF are
proprietary standards; the combination should not be either.

Note that "GeoJP2" is a trademark that refers to the original MSI encoder (now owned by LizardTech).
Please don't use the term "GeoJP2" to refer to this metadata specification -- we don't want this
specification to be encumbered by trademark issues.

1.2 Box Structure

Two UUID boxes are defined.

The first, called the GeoTIFF box, contains a degenerate GeoTIFF file as described in section 2.

The second, called the world file box, contains the usual six doubles as in an external world (.wld) file,
plus some additional version information. This is described in section 3. Presence of the world file box is
optional.

This specification assumes a compliant JP2 file with only one codestream box.

2.0 The GeoTIFF Box

The GeoTIFF box provides a simple mechanism for a JP2 file to have the same level of geospatial
metadata as is provided by the widely supported GeoTIFF standard, using the normal GeoTIFF
implementations.

2.1 UUID

The UUID for this box is

static unsigned char geotiff_box[16] =

 {

 0xb1, 0x4b, 0xf8, 0xbd,

 0x08, 0x3d, 0x4b, 0x43,

 0xa5, 0xae, 0x8c, 0xd7,

 0xd5, 0xa6, 0xce, 0x03

GeoExpress SDK 7 User Manual

92

 };

2.2 Box Contents

This box contains a valid GeoTIFF image. The image is "degenerate", in that it represents a very simple
image with specific constraints:

 the image height and width are both 1

 the datatype is 8-bit

 the colorspace is grayscale

 the (single) pixel must have a value of 0 for its (single) sample

The TIFF image is to be encoded in little endian format. [Note that an early and possibly unreleased MSI
encoder seems to have used big endian form, but the GeoTIFF data appears corrupt.]

The intent is that any compliant GeoTIFF reader/writer will be able to read/write this image.

Note that the TIFF image properties -- width, bitdepth, etc -- do NOT reflect the image properties of the
JP2 image. These image properties are not to be used in the interpretation of the geospatial metadata.

Other TIFF image properties maybe present; if so, they should be similarly ignored.

[If the TIFF image properties do not meet the constraints above, the geospatial information represented
by this box should be considered to be undefined.]

The GeoTIFF image may contain TIFF metadata tags. These should be ignored; they do not apply to the
JP2 image.

The GeoTIFF image may contain any number of GeoTIFF keys, as allowed by the GeoTIFF standard.
These keys define the geospatial metadata of this box and of the JP2 image itself.

3.0 The World File Box

[This description is based on my reading of the MSI source code; I will have to flesh this out as I become
more confident of it. Alternatively, at some point if I can get the code suitably cleaned up I may just
publish the implementation itself... If anyone needs this information now, feel free to contact me.]

The world file box contains one or more "chunks" of metadata data of various types. The most common
chunk type encodes the normal six-doubles style of geopositioning information found in the conventional
external world files often used with some image types.

[Other chunk types were used to indicate the operating system the JP2 image created on, the MSI
command line used, and arbitrary user-defined bytes. It is not clear if these other chunk types were ever
widely used or not. I will attempt to define these other chunks, but they use should be considered to be
OBSOLETE and not used in future implementations.]

Appendix A - Technical Notes

93

3.1 UUID

The UUID for this box is

static unsigned char world_box[16] =

 {

 0x96, 0xa9, 0xf1, 0xf1,

 0xdc, 0x98, 0x40, 0x2d,

 0xa7, 0xae, 0xd6, 0x8e,

 0x34, 0x45, 0x18, 0x09

 };

3.2 Box Contents

The first bytes in the box, which we will call the "header", give some versioning information and the
number of chunks in the box. The "chunks" themselves then follow, laid out as contiguous bytes. The box
ends with a small of amount of data in what we will call the "footer".

3.2.1 Header Format

Bytes 0-3: 'M', 'S', 'I', 'G'.

Bytes 4-5: major and minor version numbers (shifted and packed together) - the actual values of these
numbers may not be used for anything

Bytes 6-13: feature set flags - current values are {1, 0, 0, 0, 0, 0, 0, 0} - first flag controls interpretation of
the world file values, see section 3.2.2.1 - second flag indicates windows or linux build of encoder; not
used for anything? - remaining flags undefined (leave as zero)

Byte 14: number of chunks in the box?

Byte 15: next box?; apparently always 0

The next bytes in the file correspond to the serialization of each chunk. There may be zero or more
chunks present; each chunk type may appear at most once.

3.2.2 Chunk Format

The chunk format appears to be a simple header of six bytes, followed by the chunk-specific data.

Byte 0: chunk index, used to indicate type of chunk

GeoExpress SDK 7 User Manual

94

Byte 1: chunk properties [not used?]

Bytes 2-5: chunk length (including these six bytes) - stored as little-endian unsigned int

3.2.2.1 World Chunk Format

Byte 0: chunk index (equal to 0)

Byte 1: chunk properties

Bytes 2-5: chunk length (equal to 2 + 4 + 6*8) - stored as little-endian unsigned int

Bytes 6-13: x scale (resolution)

Bytes 14-21: x rotation

Bytes 22-29: y rotation

Bytes 30-37: y scale (resolution)

Bytes 38-45: x upper-left

Bytes 46-53: y upper-left

The six geo values are stored as little-endian doubles.

The first feature flag (defined in section 3.2.1) control the interpretation of these values. According to the
comments in the source code, if set to 1 then the following applies:

"This was instituted with version 1.03.11 (May 15, 2003) to signify that we clarified the definition of
the georeferencing data and found out that that data represents the upper left corner of the upper
left pixel, not the center as we had thought, so the [world chunk values are] not equal to the geotiff
data, but is shifted by 0.5*scale to the center of the pixel."

If the world chunk is present, these values should override the corresponding values in the GeoTIFF box.

3.2.2.2 User Data Chunk Format

Byte 0: chunk index (equal to 1)

Byte 1: chunk properties

Bytes 2-5: chunk length - stored as little-endian unsigned int

Bytes 6..n: user-defined data (chunk length minus 6 bytes)

3.2.2.2 Command-Line Chunk Format

Byte 0: chunk index (equal to 2)

Byte 1: chunk properties

Bytes 2-5: chunk length - stored as little-endian unsigned int

Appendix A - Technical Notes

95

Bytes 6..n: command-line string (chunk length minus 6 bytes)

3.2.2.2 OS Data Chunk Format

Byte 0: chunk index (equal to 3)

Byte 1: chunk properties

Bytes 2-5: chunk length - stored as little-endian unsigned int

Bytes 6..n: unknown data (chunk length minus 6 bytes)

3.2.3 Footer Format

The footer, coming after the chunk data, is six bytes long.

Byte 0: set to 0xff

Byte 1: set to 0x00

Bytes 2-5: file offset of next world file box?

Georeferencing of NITF Imagery

Typically, TREs are used to provide the necessary georeferencing. As the current SDK release does NOT
provide TRE support, however, some additional documentation may be helpful to some developers.

This technical note provides commentary on how the SDK reads and writes “positioning information” in
our NITF support – including basic world file information (upper left points, resolution), coordinate system
information (WKT data), and positioning of image segments relative to each other.

Geo Support Features in NITF

Independent of any of our implementation issues, the file format itself can provide georeferencing support
in the following ways.

IGEOLO

Each image segment may contain an ICORDS and an IGEOLO field. Together these fields give low-
precision positioning data for the four corner points of the image. The standard makes it very clear that
this data is only for cataloging purposes and should not be used for accurate georeference positioning.

The ICORDS field indicates whether the IGEOLO points are in UTM, UTM/MGRS, or WGS84. The four
pairs of numbers are expressed in either lat/long (decimal degrees) or UTM form, as appropriate.

NOTE: The standard does not address the coordinate system of the image data itself. IGEOLO data only
indicates what the boundary points of the image would be, if the image were to be projected into WGS84.

Use of the IGEOLO data is optional. For more information see MIL-STD-2500C, table A-3 (page 86).

GeoExpress SDK 7 User Manual

96

CCS

Each image segment in the file must be positioned according to the Common Coordinate System, a
virtual, underlying grid which is used to collocate all the segments in the file. The grid is expressed using
integer values with (0,0) at the upper-left. The CCS info for a segment has four parts:

ILOC: the upper-left (x,y) offset of the segment on the CCS grid. This may be an “absolute offset” (which
is relative to (0,0)) or it may be a “relative offset” (which is relative to another segment’s ILOC), depending
on the IALVL value.

IDLVL: display level, or Z-ordering. Each segment must have a unique IDLVL value. The “lowest”
segment has the lowest number. (Note: segment numbering starts at 1, not 0.)

IALVL: attachment level. A segment’s ILOC position on the CCS grid may be expressed relative to
another segment, by setting its IALVL value to the IDLVL level of the that other segment. If IALVL is zero,
the ILOC position is relative to (0,0).

The ILOC values must be in the range -9,999 to 99,999 (5-digit field). This means that certain mosaics
cannot be represented. For example, consider four 40Kx40K images laid out as follows:

The ILOC for images 1 and 4 cannot be expressed relative to (0,0) as they would require offsets of
120,000, which is out of range. They cannot be expressed relative to the origin of images 2 and 3 either,
as they would require offsets of -40,000, which is also out of range. A more obvious – but less likely –
mosaic which cannot be represented is simply two images spread far apart:

where the images are both 1Kx1K and image 2 is 150,000 units from the origin.

Use of the CCS data is required. For more information see MIL-STD-2500C, table A-3 (page 97).

BLOCKA TRE

This metadata extension contains four fields which repeat the IGEOLO fields for the segment but provide
higher precision. They are always expressed in WGS84 lat/long, as degrees/minutes/seconds or decimal
degrees.

Appendix A - Technical Notes

97

NOTE: As with IGEOLO, the BLOCKA data does not say anything about the coordinate system of the
image data itself.

Use of the BLOCKA TRE is optional. Within BLOCKA, the LOC fields are themselves optional. For more
information see STDI-0002, section 8.3.4 (page 83).

World Files

Although not part of any NITF standard, the normal LizardTech world file conventions nonetheless can be
used to specify the upper-left coordinates and resolution of the image.

Image Segment CRSes

A careful consideration of the above will reveal that, given the data available, the SDK has no way to
determine the coordinate system of any image segment absent any TRE support. It may know where the

image is, for cataloging or indexing purposes, but it knows nothing about the data itself.

This could be addressed by adding our own “proprietary” TRE or Text Segment which would contain our
WKT string. Such extensions would go against the intent of the standard, however. Absent the TRE
information, in the near term we suggest that image segments should generally be projected into the
common WGS84 space, where possible and practical.

Implementation Support

This section describes the rules governing how the above fields are interpreted and represented within
the SDK for NITF files. We consider the four cases of reading and writing both single and multiple
segment files.

In the following discussion, recall that within the SDK framework, an “image” (class LTIImage) contains a

“geo coord” object (class LTIGeoCoord) which contains three main pieces of data:

 the (x,y) upper-left position

 the (x,y) resolution

 the WKT string

Single Segment Reading

The SDK supports the ability to read any one single segment from a NITF file.

As discussed above, the SDK can never know the projection system of an image segment. Nonetheless,
the geo position is determined as follows:

1. First, we fall back to the normal default of (0,h) for the upper-left position. The WKT string is left
empty.

2. If set, we interpret the IGEOLO/ICORDS field to determine the x,y corner position.
3. If present, a world file will then override the default positions.
4. We then offset the geo position of the image based on the ILOC data for the segment. (Note: The

ILOC data is multiplied by the resolution, before adding it to the position)

GeoExpress SDK 7 User Manual

98

NOTE: The world file serves to describe the position of CCS (0,0), not any individual segment in
particular.

Multiple Segment Reading

The SDK only supports the ability to read a single segment. To read multiple segments, to be displayed
as a mosaic of tiles, the SDK's mosaic filter stage should be used.

Single Segment Writing

When writing an image, the SDK will always have good georeferencing information, but we may or may
not have good WKT data.

 set ILOC to (0,0), IDLVL to 1, and IALVL to 0

 if we have WKT data, and if the points can be reprojected into WGS84, then
o write the IGEOLO data
o write the BLOCKA TRE

 write a world file (at user’s discretion)

Multiple Segment Writing

When writing multiple segments, the SDK is given both the constructed mosaic and each of the individual
segments.

 ILOC data:
o the ILOC (x,y) of each segment is set based on the segment’s georeferencing information,

relative to the georeferencing information of the origin of the overall mosaic (and scaled
appropriately by resolution)

o the IDLVL is set to the segment number
o the IALVL is set to 0

 as in the single segment case, if we have WKT data, and if the points can be reprojected into
WGS84, then

o write the IGEOLO data
o write the BLOCKA TRE

 write a world file (at user’s discretion)
o using the georeferencing information of the overall mosaic

NOTE: Because we keep IALVL at 0, we’re limited to having any one segment at most 100K units from
the CCS origin. That is, we do not yet support the ability to position one segment relative to another.

Writing JPEG 2000 Segments

When writing JPEG 2000 segments, you may use the “boxed” format. This means the classical metadata
box is typically present; if so, this is used to recover the georeferencing information for the segment per
the normal SDK processes.

Appendix A - Technical Notes

99

Metadata Tags

Encoded within each MrSID (and JPEG 2000) file is a set of metadata tags, used to convey additional
information about the image. These tags are similar to TIFF tags, although the actual encoding
mechanism is different. The mrsidinfo tool can be used to dump the metadata for an image.

The standard metadata tags used by all MrSID images, referred to as the "classical" tags, are listed
below. Other than the "start" and "end" tags, the tags may appear in any order.

For mosaicked images, the metadata encoded with the image generally corresponds to the first image in
the mosaic. The filename metadata tag contains a comma-separated list of the input files. The metadata
refers to the image as presented to the encoder; this means that any filter or transforms operations will be
correctly accounted for.

The metadata is supplemental information only. Some of this metadata is also contained in the
LTIImage class; in general, querying the LTIImage class is preferred to evaluating the metadata, for

example for information such as geographic position, background color, etc.

General Tags

The tags in the table below apply to both MG2 and MG3 encoding.

General Metadata Tags

Tag Description Notes

IMAGE::BITS_PER_SAMPLE Number of bits per
sample (uint16)

IMAGE::COLOR_SCHEME Colorspace of image
(uint32)

Values: 0 for RGB, 3
for grayscale, 2 for
CMYK, 10 for
multispectral

IMAGE::DATA_TYPE Datatype of samples in
image (uint32)

Values: 0 for unsigned
8-bit int, 1 for 32-bit
float, 2 for unsigned
16-bit int

IMAGE::DEFAULT_DATA_VALUE Sample values for
background pixel

Stored as an array of
values, one for each
band, in order. The
values are stored in
the datatype of the
samples

NOTE: With older
images containing
uint8 data, the tag
IMAGE::NO_DATA_VA

LUE may be used

IMAGE::DYNAMIC_RANGE_WINDOW Custom contrast
setting (double)

Represents the size of
the range of the data

GeoExpress SDK 7 User Manual

100

Tag Description Notes

IMAGE::DYNAMIC_RANGE_LEVEL Custom brightness
setting (double)

Represents the
midpoint of the range
of the data

IMAGE::EOM End of metadata

IMAGE::HEIGHT Height of the image, in
pixels (uint32)

IMAGE::INPUT_FILE_SIZE Size of the input image
or mosaic in bytes
(double)

IMAGE::INPUT_FORMAT Name of input image
type (string)

IMAGE::INPUT_LUT Color lookup table Stored as an array of
256*3 values, one
value for each band
(R,G,B) for each of the
256 entries in the table

IMAGE::INPUT_NAME Filename of the input
image (string)

IMAGE::NO_DATA_VALUE Sample values for
background pixel

Used only by older
MrSID images; see
IMAGE::DEFAULT_DA

TA_VALUE

IMAGE::SOM Start of metadata

IMAGE::TRANSPARENT_DATA_VALUE Sample values for the
"no data" pixel

Stored as an array of
values, one for each
band, in order. Values
are stored in the
datatype of the
samples

IMAGE::WIDTH Width of the image, in
pixels (uint32)

IMAGE::X_RESOLUTION Georeferencing pixel
resolution in x-direction
(double)

IMAGE::XY_ORIGIN Georeferencing (x,y)
location for the center
of the upper left corner
pixel

Stored as an array of
two doubles

IMAGE::Y_RESOLUTION Georeferencing pixel
resolution in x-direction
(double)

Appendix A - Technical Notes

101

Area of Interest (AOI) Tags

The tags in the table below apply only to images encoded with areas of interest:

Area of Interest (AOI)Tags

Tag Description Notes

IMAGE::AOI::n::REGION::VECTOR

OVERLAY

Name of vector overlay
file, if any – (string)

IMAGE::AOI::n::REGION::VECTOR

OVERLAY_LAYER

Layer number from
vector overlay file (if
one is used) – (integer)

IMAGE::AOI::n::REGION::X Upper left X pos of
region – (integer)

IMAGE::AOI::n::REGION::Y Upper left Y pos of
region – (integer)

IMAGE::AOI::n::METHOD The AOI method used
– (string)

Values: "shift inner",
"shift outer", "weight"

IMAGE::AOI::n::WEIGHT Weight value used –
(double)

IMAGE::AOI::n::MAGNIFICATION Magnification at which
AOI was applied –
(double)

IMAGE::AOI::n::NAME Optional name of AOI
region – (string)

IMAGE::AOI::n::COMMENT Optional comment for
AOI region – (string)

IMAGE::AOI::n::URL Optional URL referring
to AOI region – (string)

MG2-Only Tags

The classical tags in the table below apply to MG2 images only:

MG2-Only Tags

Tag Description Notes

IMAGE::COMPRESSION_BLOCK_SIZE Block size used in
MrSID encoding
(uint32)

IMAGE::COMPRESSION_GAMMA G-weight value used in

GeoExpress SDK 7 User Manual

102

Tag Description Notes

MrSID encoding (float)

IMAGE::COMPRESSION_VERSION Version of encoder
used (array of 3 sint32
values)

IMAGE::COMPRESSION_WEIGHT Weight value used in
MRSID encoding
(float)

IMAGE::CREATION_DATE Date and time of
image encoding
(string)

IMAGE::COMPRESSION_NLEV Number of zoom
(resolution) levels in
the image (uint32)

IMAGE::STATISTICS:MAXIMUM Maximum sample
values for each band
in the input image
(array of values)

The number and
datatype of the values
correspond to the
number of bands and
sample type of the
image

IMAGE::STATISTICS:MINIMUM Maximum sample
values for each band
in the input image
(array of values)

The number and
datatype of the values
correspond to the
number of bands and
sample type of the
image

IMAGE::STATISTICS:MEAN Average value of all
samples for each band
(array of doubles)

IMAGE::STATISTICS:STANDARD_DE

VIATION

Standard deviation of
all samples for each
band

IMAGE::TARGET_COMPRESSION_RAT

IO

Compression ratio
used for encoding
(float)

For MG2, this only
approximates the
actual compression
ratio achieved

Other Metadata Tags

When using GeoTIFF input images, the GeoTIFF metadata tags are copied directly into the MrSID or
JPEG 2000 file. When using ERDAS IMAGINE and USGS DOQ metadata, certain other custom
metadata tags are inserted as well.

Appendix A - Technical Notes

103

Negative y-Resolutions

The y-resolution ("YRES" or "YDIM") of an image can be either positive or negative, depending on what
type of image is being used and which interface is being used to query the resolution. This note provides
some background on this issue.

First, some definitions:

By "negative YDIM" (hereafter, "-YDIM"), we mean that (0,0) is in the LOWER LEFT and extends up and
to the right to (w,h). This is the normal Cartesian representation you learned in high school algebra.

By “positive YDIM” ("+YDIM"), we mean that (0,0) is in the UPPER LEFT and extends down and to the
right to (w,h). This is a common representation in computer graphics.

Figure 1 shows the default geo coordinates for a 640x480 image with no internal georeferencing, using -
YDIM conventions. Note that while the rows of the image will proceed visually down the page, the y-value

of the rows decreases, from 479 down to 0.

Figure 1: 640w x 480h

The GeoExpress SDK follows the -YDIM convention. This means that the function
LTIGeoCoord::getYRes() will generally return a value less than zero. Image reader and writer

classes must respect this: when importing or exporting geospatial resolutions, care must be taken to
adjust the sign if needed in order to match the SDK requirements and the external file format
requirements.

Additional notes

The classical MrSID metadata tag IMAGE::Y_RESOLUTION is stored with a positive sign, for historical

reasons. If you access this metadata value directly, you must multiply the value by -1.0 before using it.

GeoExpress SDK 7 User Manual

104

As a debugging aid, the mrsidinfo tool can be used to show the georeferencing of the image, including all
four corner points.

World files expect the use of negative YDIMs (fourth line).

BBB files use positive YDIMs in their headers. (The LTIBBBImageReader class will internally negate the

value to satisfy the SDK requirements.)

YDIM and XDIM should never be 0.0.

Nodata and Background Pixels

This note describes how the GeoExpress SDK implements the concepts of "nodata" and "background"
pixels.

Definitions

Nodata

The nodata pixel of an image is used to indicate which pixels within the bounds of the image are to
be ignored when performing an operation on the image, for example mosaicking, rendering, etc.
The default is to have no nodata pixel associated with an image; in this case, all pixels in the
image represent valid data.

Background Data

The background pixel of an image is used to provide valid pixel values outside of the bounds of the
image. In rendering the image, if the specified scene exceeds the boundaries of the image, the
background pixel can be used by an application to fill in the portion of the output buffer beyond the
image boundary.

The default is to have no background pixel associated with an image. In this case, when pixels
"outside of" the image are required, the black pixel consisting of a zero in each band will be used.
For CMYK images, however, the pixel consisting of the maximum sample values in each band will
be used.

While the LTIImageStage::read() function does not allow for decoding outside the bounds of

the image, the background pixel and the nodata pixel are used when mosaicking multiple images
together.

Transparency

The GeoExpress SDK does not support transparency operations more generally than the above
simple nodata support, for example via bitmasks, clipping paths, or alpha blending.

MrSID Metadata Tags

For compatibility reasons, the classical metadata tag names used in MrSID do not correlate well with the
definitions given above.

The tags used are:

Appendix A - Technical Notes

105

IMAGE::NO_DATA_VALUE

Represents the background pixel (used by older MrSID images)

IMAGE::DEFAULT_DATA_VALUE

Represents the background pixel (used by newer MrSID images)

IMAGE::TRANSPARENT_DATA_VALUE

Represents the nodata pixel

Figure 1 shows two images, A and B, that are to be mosaicked together into image C, such that B lies
precisely on top of A. Both images have a background color of red and a nodata color of blue. In the
mosaic C, the upper rectangle is yellow because the data comes from the nodata region of B, which
allows the A image to “show through”. The lower rectangle is red, however, because we again "see
through" B and onto the corresponding region of A; that region is set to the nodata color, therefore the red
background of A is used.

Figure 1: Nodata and background color in overlapping images

Notes on the Mosaicking Process

When mosaicking two images together, the nodata pixel of the image "on top" is honored. Many images
do not have a nodata pixel explicitly set, however, so the following rules are applied:

GeoExpress SDK 7 User Manual

106

1. If the image has a nodata pixel set, use that.
2. Otherwise, if the image has a background pixel set, use that.
3. Otherwise, use the "black" pixel.

The motivation for this treatment of nodata is to give the best looking image for the case when two
images are being mosaicked together such that only their corners overlap, resulting in a large image with
a lot of "black" background. If this resulting mosaic is then laid on top of some other even bigger image,
we want to be able to treat that black background as nodata. (Note: this solution does allow for speckling

in the image, as the original two squares might have legitimate black pixels within their data.)

If either background or nodata is to be set for an image, set both properties to the same value. When
mosaicking images together, all images should have the same background and nodata color.

107

Appendix B - Company and Product Information

This chapter contains information about LizardTech and its products as well as copyrights, trademarks
and other information pertaining to this LizardTech software.

About LizardTech and LizardTech Products

LizardTech was founded in 1992 to build valuable business solutions from technologies created by the
world’s leading research organizations, including Los Alamos National Laboratory (LANL) and AT&T
Labs.

LizardTech applies state-of-the-art technologies to the real-world challenges of managing, distributing,
and accessing large, complex digital content such as aerial photographs and satellite imagery.
LizardTech's software is installed on millions of desktops and integrated into a wide variety of platforms
and applications.

LizardTech has offices in Seattle, London and Tokyo, and is part of Celartem Technology Inc. (Osaka
Securities Exchange, Hercules:4330), a Japan-based technology company focused on storage and
distribution technologies for digital images.

Other LizardTech Products

We at LizardTech are glad to have you as a customer. We’re confident that you will find the LizardTech
GeoExpress SDK to be everything you need to build support for MrSID into your products. While you’re
“in the shop,” explore LizardTech’s other great products for managing and distributing geospatial imagery.
For instant notification of new LizardTech product releases and patches add the following link to your
favorite RSS feed reader:

 http://www.lizardtech.com/files/rss/updates.xml

GeoExpress

GeoExpress is the industry standard used by geospatial professionals to manipulate and compress raster
image files for use in geospatial applications. GeoExpress offers the benefits of both MrSID technology
and ISO standard JPEG 2000 without any compromise in image quality. In addition to lossless encoding,
which preserves images with pixel-for-pixel fidelity in a compressed format easily reusable in downstream
applications, GeoExpress provides valuable image manipulation tools such as cropping, mosaicking,
reprojection from one coordinate reference system to another and color balancing.

Learn more about GeoExpress at http://www.lizardtech.com/products/geo.

Express Server

Express Server is a server application for rapidly distributing large datasets of raster imagery. With
Express Server, users on any device over any connection access imagery faster. Express Server enables
organizations to serve more users in less time using widely adopted standards and familiar tools – without
adding hardware or bandwidth.

Learn more about Express Server at http://www.lizardtech.com/products/exp.

http://www.lizardtech.com/files/rss/updates.xml
http://www.lizardtech.com/products/geo
http://www.lizardtech.com/products/exp

GeoExpress SDK 7 User Manual

108

Spatial Express

Spatial Express is a set of command-line tools and a compression plug-in that together enable you to
load georeferenced raster imagery into your Oracle Database 10gR2. Storing imagery as compressed
MrSID or JPEG 2000 imagery instantly reduces database storage requirements by as much as 95
percent and enables you to easily retrieve desired image scenes according to geospatial and other
metadata.

Learn more about Spatial Express at http://www.lizardtech.com/products/spatial.

ExpressView Browser Plug-in

ExpressView Browser Plug-in (formerly MrSID Browser Plug-in) gives standard Windows and Mac Web
browsers the ability to natively view MrSID and JPEG2000 images. The intuitive graphic user interface
allows you to view, magnify, print and save images. ExpressView Browser Plug-in is free for individual
use and is easily installed as a plug-in for Netscape®, Internet Explorer and Safari Web browsers.

Download this plug-in at http://www.lizardtech.com/download/dl_options.php?page=plugins.

Copyrights, Trademarks and Credits

Copyright (c) 2008 LizardTech, 1008 Western Avenue, Suite 200, Seattle, WA98104. Unauthorized use
or distribution prohibited. Access to and use of this code is permitted only under license from LizardTech.

Your use of this software development kit (SDK) is subject to your acceptance of the license agreement in

doc/license.pdf.

Portions of the code are protected by US and foreign patents and other filings. All Rights Reserved.
LizardTech and the LizardTech logo are property of LizardTech. MrSID is a registered trademark of
LizardTech. Unauthorized use is prohibited.

Microsoft, Windows, and NT are either registered trademarks or trademarks of Microsoft Corporation in
the U.S.and/or other countries. Intel and Pentium are registered trademarks of Intel Corporation. Bentley
is a registered trademark of Bentley Software Inc. ESRI is a registered trademark and ArcInfo is a service
mark of Environmental Systems Research Institute, Inc. ERDAS and ERDAS IMAGINE are registered
trademarks of Erdas Inc. Intergraph is a registered trademark of Intergraph Corporation. Netscape and
Navigator are registered trademarks of Netscape Communications Corporation. MapInfo is a registered
trademark of MapInfo Corporation. Sun and Solaris are registered trademarks of Sun Microsystems.
Autodesk is a registered trademark of Autodesk, Inc. All other trademarks are the property of their
respective owners.

Support for TIFF-LZW in this product is under license from Unisys Corporation. The LZW capability is
protected under foreign counterparts of U.S. Patent No. 4,558,302. This license does not authorize or
permit you to use any other product or perform any other method or activity involving the use of LZW. Any
other use of LZW may require that you obtain a separate LZW license in writing from Unisys.

Portions of this software are copyright ©2007 ERDAS. All rights reserved. Creating compressed files
using ECW technology is protected by one or more of U.S. Patent No. 6,201,897, No. 6,442,298 and No.
6,633,688.

ERDAS IMAGINE IMG file format access utilities are copyright 1991-2003, ERDAS. All rights reserved.
Unauthorized use or duplication prohibited. IMG file support is provided under license from ERDAS. As
part of this file support, the following applies: Time conversion support is implemented using the time

http://www.lizardtech.com/products/spatial
http://www.lizardtech.com/download/dl_options.php?page=plugins

Appendix B - Company and Product Information

109

library, Copyright © 1985-89, Free Software Foundation, Inc. Regular expression parsing and support is
implemented using the extended regular expression matching and search library, Copyright © 1985-89,
Free Software Foundation, Inc. The source code necessary to build the gnutim or ergx libraries is
available under the GNU Library General Public License. For more information regarding this license,
please refer to www.opensource.org.

This application uses Kakadu software, licensed from Unisearch Software, Ltd.

This application uses GML powered by Galdos. Galdos and GALDOS are trademarks of Galdos Systems
Inc., used under license.

This software uses the LIBTIFF Software Library: Copyright © 1988-1997 Sam Leffler and Copyright ©
1991-1997 Silicon Graphics, Inc.

This program utilizes the Independent JPEG Group's LIBJPEG library: Copyright (c) 1991-1998, Thomas
G. Lane

MODIS image dataset provided by Reto Stockli, NASA Earth Observatory,
rstockli@climate.gsfc.nasa.gov

This code relies on a number of Open Source software packages, including but not limited to cppunit,
crypto++, expat, GDAL, zlib, perl, gcc, cvs, OpenSSL, gSOAP, doxygen and Linux. LizardTech thanks the
Open Source community for its efforts.

111

Glossary

Following are descriptions of some terms, phrases and acronyms used in this documentation that you
may not be familiar with.

Background color

The pixel value that defines the color of the image outside the pixel extents of the image. This
property is most often used in mosaicking. See also "Nodata color" and "Transparency color".

Band

A set of samples corresponding to one spectral component of an image e.g. the “red” band of an
RGB image. Also known as component. There is a weak correlation between the colorspace and
the number of bands: grayscale is 1, RGB is 3, CMYK is 4. (Multispectral is the exception, as it has
one or more bands.)

BBB

Name of a file format for raw images, short for "BIP/BIL/BSQ."

BIL

One of the three “BBB” formats; abbreviation for "band-interleaved by line." In this data layout, the
samples of the image are laid out per line, one sample at a time. Figure 1 shows a 3-banded
image of width 3 and height 2 using a BIL layout.

R00 R01 R02

G00 G01 G02

B00 B01 B02

R10 R11 R12

G10 G11 G12

B10 B11 B12

Figure 1: BIL Layout

BIP

One of the three “BBB” formats; abbreviation for "band-interleaved by pixel." In this data layout, the
samples of the image are laid out per pixel, one sample at a time. Figure 2 shows a 3-banded
image of width 3 and height 2 using a BIP layout.

R00 G00 B00 R01 G01 B01 R02 G02 B02

R10 G10 B10 R11 G11 B11 R12 G12 B12

Figure 2: BIP Layout

GeoExpress SDK 7 User Manual

112

BSQ

One of the three “BBB” formats; abbreviation for "band-sequential." In this data layout, the samples
of the image are laid out per band, one sample at a time. Figure 3 shows a 3-banded image of
width 3 and height 2 using a BSQ layout.

R00 R01 R02

R10 R11 R12

G00 G01 G02

G10 G11 G12

B00 B01 B02

B10 B11 B12

Figure 3: BSQ Layout

Byte order

See "Endianness".

Component

See "Band".

Composite image

With respect to MG3, an image made up of several internal images (known as tiles). See also
"MG3".

Compression

An operation that creates a new image file from an original image file such that the file size of the
new image is smaller. The reduction in file size may be at the expense of some image quality.
(Note that the file size is what is reduced, not the dimensions of the image itself.) See also
"Lossless" and "Lossy".

Compression ratio

The amount or degree of reduction in file size, expressed as the ratio of the nominal file size to the
target size. Because nominal size is used, compression ratios from compressed formats, e.g.
JPEG, can be misleading. For example, consider a 50MB raw file compressed to a 10MB JPEG
file: this is 5:1 compression ratio. Performing a further 10:1 MrSID compression on that 10MB
JPEG file will produce a 5MB MrSID file, not a 1MB file, because the 10:1 is relative to the image's
nominal size and not it's current physical file size. See also "Nominal image size".

Delegate

An abstract class used to implement callbacks. The GeoExpress SDK uses delegates for situations
such as detecting interrupts or reporting progress during a decode operation.

Glossary

113

Dynamic range

The range values of the samples of an image.

Dynamic range can be expressed in two forms, "min/max" and "window/level". In the first form, the
range is expressed using minimum and maximum values. In the second form, the range is
expressed with a "window" value equal to the size of the range, for example (max-min+1), and a
"level" value equal to the midpoint of the range, for example (min+max)/2. Window and level
correspond roughly to the concepts of "contrast" and "brightness", respectively.

Some images, notably those with 16-bit data, often display as "very dark" because the full 16-bit
range of the sample size is not used by the actual sample values; dynamic range information can
be used to scale or stretch the data for better presentation. The figure below illustrates the
dynamic range of a 10-bit image (log scale).

Figure 4: Dynamic range of a 10-bit image (log scale)

Endianness

the order in which bytes in a multibyte word are stored. In a big endian machine the most
significant byte of the word is stored at the lowest address of the word; in a little endian machine,
the most significant byte is stored at the highest address. Big endian machines include SPARC
and PowerPC. Little endian processors include the Intel x86.

The table below shows the effects of endianness where:

unsigned int value = 0x01020304;

unsigned char* p = (unsigned char*)&value;

Address Little Endian
Value

Big Endian
Value

*p 0x04 0x01

GeoExpress SDK 7 User Manual

114

Address Little Endian
Value

Big Endian
Value

*(p+1) 0x03 0x02

*(p+2) 0x02 0x03

*(p+3) 0x01 0x04

Figure 5: Endianness and Byte Order

Frequency balance

A parameter used in MrSID to determine the emphasis given to edges and “flat” color areas when
performing compression. In MG2 encoding this parameter is called gamma. A lower value creates
more defined edges, while a higher setting creates softer edges. See also "Weight" and
"Sharpness".

Gamma

See "Frequency balance".

GML

An acronym for geography markup language, an XML-based language for representing many
types of geographic content. Using GML primitives one can describe coordinate reference
systems, units of measure, features, geometries and topologies, coverages, annotations and more.

JPEG

A widely used image format that supports image compression. JPEG is an ISO standard. See also
JPEG 2000.

JPEG 2000

A new, wavelet-based image format designed for high-quality imagery and advanced imaging
workflows. JPEG 2000 is an ISO standard. See also JPEG, MrSID.

K-weight

A parameter used in MrSID to determine the emphasis given to the K (black) band of a CMYK
image when performing compression.

Level

See "Zoom level".

Lossless

An image that contains a representation of all of the original pixel values; when decoded, a
lossless image is mathematically identical to the original. Note that lossless refers only to the
image data and implies nothing about the image metadata. See also "Visually lossless" and
"Lossy".

Lossy

Glossary

115

An image that contains an approximation of all of the original pixel values; when decoded,
depending on the quality of the compression, a lossy image may appear to be a poor
representation of the original, visually indistinguishable from the original, or anywhere in between.
The perceived image quality is affected by changes in the sharpness of edges, color balance,
reduced resolution, and so forth. See also "Lossless" and "Visually lossless".

Magnification

The scale at which an image is represented. Magnification is expressed as a positive floating point
value: 1.0 represents the full image (at “one to one”), 0.5 represents a half-scale (lower resolution)
version, and 2.0 represents a double-scale (expanded) resolution. The magnification value must
be a power of two. See also "Resolution", "Scale" and "Zoom level".

Metadata

Information about the image, as opposed to the actual image data (pixels). Metadata can refer to
basic image properties such as width, height, colorspace, etc., but generally refers to less
fundamental properties such as geospatial position, name of image creator, image date, etc.

MG2

MrSID Generation 2. The first version of the MrSID image format. MG2 is limited to lossy encoding
and does not support optimization.

See also "MrSID" and "MG3".

MG3

MrsidGeneration 3. The second and current version of the MrSID image format. MG3 supports
lossless encoding, image optimization, and composite images. See also "MrSID" and "MG2".

Mosaic

A composition of two or more images to form a new, larger image. Positioning of the images is
generally based on geospatial coordinates.

MrSID

Acronym abbreviating Multiresolution Seamless Image Database. MrSID is a wavelet-based image
format designed for large, high-quality geospatial imagery. There are two versions of MrSID,
known as MG2 and MG3. See also "MG2" and "MG3".

Nodata color

Same as "Transparency color". The pixel value that defines the color of the image that
corresponds to a region of the image that has no valid data. Note that a transparency region of the
image is contained with the image extents, whereas the background color is used for regions
outside of the image. This property is most often used in mosaicking. See also "Background color".

Nominal image size

The size of an image, in bytes, defined by the product of

image width x image height x number of bands x number of bytes per

sample

GeoExpress SDK 7 User Manual

116

 See also "Physical image size".

Optimization

The process of creating an MG3 image from a source MG3 image, such that the new image is
better suited for some purpose or workflow. The most common optimization is compression; other
optimization operations include cropping and removal of resolution levels.

Physical image size

The size of an image, in bytes, as defined by the file size required to represent the image on disk.
See also "Nominal image size".

Pixel

A set of samples, together making up a single (x,y) point in the image; for example, a 100 x 200
RGB image will contain 20,000 pixels. See also "Sample".

Resolution

Definition #1) The scale at which an image is represented as expressed in a wavelet level. The
pixel resolution at level 0 (zero) is equal to a magnification of 1.0. See also "Magnification", "Zoom
level" and "Scale".

Definition #2) Ground units per pixel as used for georeferencing (a value stored in the metadata of

an image).

Sample

A value representing a magnitude or intensity, for example a red sample in an RGB pixel. A 100 x
200 RGB image will contain 60,000 samples. See also "Pixel".

Scale

The resolution or magnification at which an image is represented. Scale is represented as a signed
integer, corresponding to the negative of the log of the magnification. That is, magnifications of 1.0,
0.5, and 2.0 are equivalent to scales of 0, 1, and -1, respectively. See also "Magnification", "Zoom
level" and "Resolution".

Scene

The region of an image to be decoded, as defined by an upper-left position, width and height
dimensions, and magnification.

Sharpness

A parameter used in MrSID to determine the sharpness of boundaries between different areas of
an image when performing compression. See also "Frequency balance" and "Weight".

Stream

An abstract interface to an arbitrary chunk of data, represented as an array of bytes; examples of
data that can be represented as streams include files, memory buffers, and sockets.

Strip height

Glossary

117

The number of rows of an image to be processed in each step of an image read operation. Use of
smaller strip heights may reduce memory requirements, but at a possible performance loss.

Transparency color

Same as "Nodata color". See also "Background color".

Visually lossless

An image that contains a close approximation of all of the original pixel values; when decoded, a
visually lossless image appears to a typical viewer as being indistinguishable from the original. A
visually lossless image is a lossy image. See also "Lossless" and "Lossy".

Wavelet

A mathematical representation of a pixel value that varies by frequency and duration; in wavelet
space, the importance of a pixel depends on the values of its neighboring pixels. Wavelet-based
image formats are able to present images at multiple levels of resolution without the overhead of
pyramidal formats.

Weight

A parameter used in MrSID to determine the emphasis given to the grayscale portion of a color
image when performing compression. See also "Frequency balance", "Sharpness" and "K-weight".

World file

A text file that contains geospatial positioning information to augment or replace the geospatial
information in an image file.

Zoom level

The scale at which an image is represented. Levels are generally expressed with signed integer
values. An image “at scale 1” has half the width and height of the original. See also "Scale",
"Magnification" and "Resolution".

119

Index

A

Architecture and design, 15

B

Background data, 104

Base classes, 25

Base enums, 25

Basic typedefs, 23

BBB files, 82

Bitplanes, 39

Buffers, 27

C

C API, 53

decode support, 54

image support, 53

metadata support, 54

streams, 54

C header file, 23

Classes

base, 25

image, 26

J2KImageReader, 45

LTIFileSpec, 23

LTIGeoFileImageWriter, 26

LTIImage, 17

LTIImageFilter, 17

LTIImageReader, 17

LTIImageStage, 17

LTIImageStageManager, 17

LTIImageWriter, 17

support, 23

Coding conventions, 73

Command line applications, 55

common switches, 55

mrsiddecode, 57

mrsidinfo, 56

mrsidviewer, 63

Compression

lossy, 42

Concrete image filters and writers, 29

Copyrights, trademarks and credits, 108

Creator Deletes rule, 21

Credits, 108

D

Decode support (C API), 54

Developer website, 13

E

Enums, 25

F

Fidelity index, 40

G

GDAL

sample code linking requirement, 13

Georeferencing

NITF imagery, 95

GeoTIFF metadata, 89

Glossary, 111

I

Image classes, 26

Image filters, 15, 29

Image readers, 15

Image stages, 15

GeoExpress SDK 7 User Manual

120

Image support (C API), 53

Image writers, 15, 30

Initializations, 21

install.txt, 13

Installation, 13

J

JPEG 2000

GeoTIFFmetadata, 89

reader, 45

sample code linking requirement, 13

support for, 45

L

Legal information

copyrights, trademarks and credits, 108

Linking the sample code, 13

LizardTech

about, 107

other products, 107

Lossless compression, 32

Lossy compression, 32, 42

LTIFileSpec class, 23

M

Metadata

GeoTIFF metadata for JPEG 2000, 89

NITF input, 48

support for, 51

tags, 99

Metadata database, 52

Metadata record, 51

Metadata support (C API), 54

Metadata tags, 52

MG2

and MG3, 31

MG3

and MG2, 31

decoder, 42

encoder, 34

fundamentals, 34

key features, 31

optimizer, 40

MG3 memory usage, 67

MrSID

Generation 2, 31

Generation 3, 31

support for, 31

MrSID readers, 43

mrsiddecode, 57

mrsidinfo, 56

mrsidviewer, 63

N

Negative y-resolutions, 103

NITF

georeferencing, 95

input metadata, 48

reader, 47

support for and compliance, 47

No Magic rule, 21

Nodata and background pixels, 104

O

Optimization, 32

Overrides, 77

P

Pipeline design, 15

image stages, 15

implementation, 17

Porting guide, 65

Introduction

121

Preprocessor constants, 23

R

Raw readers and writers, 27

Readers and writers

JPEG 2000 reader, 45

MrSID readers, 43

NITF reader, 47

raw, 27

Reference counting, 21

Reordering, 42

Resolution

negative, 103

S

Sample code, 13

Scene and buffer management, 27

Scenes, 18

Selective decompression, 32

Status codes, 20

Status strings, 23

Streams, 24

technical notes, 78

Streams (C API), 54

Strip-based decoding, 17

Subbands, 36

Subblocks, 37

Support classes, 23

System requirements, 11

Linux, 12

Macintosh, 12

Solaris, 12

Windows, 11

T

Technical notes

BBB files, 82

coding conventions, 73

georeferencing NITF imagery, 95

GeoTIFF metadata for JPEG 2000, 89

metadata tags, 99

MG3 memory usage, 67

negative y-resolutions, 103

nodata and background pixels, 104

overrides, 77

porting guide, 65

streams, 78

world files, 81

zoom levels, 71

Technical support, 13

before you contact us..., 14

Trademarks, 108

W

World filles, 81

Z

Zoom levels, 36, 71

